
TINE Collaboration 
Meeting 2012 

If your software project team can eat more than two 
pizzas, then it is too large! 

 



Issues 

 Release 5.0 Requirements 
 Properties and Devices 
 Security 
 DOOCS compatibility 
 Supported Platforms and APIs (including Web) 
 Central Services 
 Standard servers 
 Video system 
 Peripheral Applications (watchdogs, etc.) 
 Diagnostics and logging 
 CDI, TICOM, + other low-level interfaces 
 Documentation and Forums 
 Distribution / Repositories 



Release 5.0 Requirements 

 protocol headers 
◦ new protocol headers => new major release ! 

 string lengths 
 contract coercion 
 error codes 
 supported data types 
 performance criteria 
 redirection / server groups 
 hot-swapping / fail-over / redundancy 
 configuration database 
 „hooks‟ to additional services 

 



Protocol Headers 

 all client requests begin with a packet 
header: 

And it‟s been like this since 
the Isolde days ! 



Protocol Headers: packet header 

 „tineProtocol‟ field tells the server which tine 
protocol the client wants to speak! 
◦ A legacy server will respond with „illegal_protocol‟ if 

the requested level is too high (or too low). 

 e.g.#1: release 4 client contacts release 3 server 
◦ client receive „illegal_protocol‟ and tries again with release 

3 headers 

◦ everyone is happy !  

 e.g. #2: release 3 client contacts release 4 server 
◦ server is willing to work with release 3 headers 

◦ everyone is happy !  

◦ Note: a release 4 server is NOT willing to use 
release 2 headers ! 



Protocol Headers: packet header 

 Points: 
◦ In order for backward/forward compatibility to work, the 

„tineProtocol‟ field must always be in the same spot in 
the packet header ! 

◦ So „user name‟ is always 16 characters or less ! 
 Is this an issue ? (see „String lengths‟ later). 
 (actually not really true:  just need byte 18 to point to the 

protocol level) 
◦ It‟s probably time to split off the „totalSize‟ field from the 

header definition (or not?). 
 totalSize is an unsigned short => maximum 65535 bytes 
 tine does its own packet reassembly => not a problem! 

◦ This also happens in Java, but the incoming/outgoing 
byte streams are mapped into fields in a class 
 Java does not have structures 
 Java does not have unsigned integers 



Protocol Headers: packet header 

 Java: 

signed short 



Maximum Transport Unit 

 MTUs 
◦ Response (server -> client) 

 settable: 512 -> 64 K 
 default : 1472 

◦ Request (client -> server) 
 settable only in C and only at compile time 
 default: 1472  
 some builds (NIOS) had 1000 bytes 
 note: client requests rarely send large data sets to 

server ! 
 

 => also allow this to be settable ! 
◦ (and fix the java code) 



Protocol Headers: subscription 

 Subscription Header from client 
◦ can be packed (multiple requests in a packet) 

◦ any packet reassembly (due to long input data) 
must recognize the contract ! 

212 bytes 



Protocol Headers: CONTRACT 

 The contract structure: 
◦ together with input data uniquely specifies the 
call ! 

◦ EqmDeviceName ends with „&‟ => use 
extended string space. 

188 bytes 



Protocol Headers: the Request 

 A request from a client contains: 
◦ PktHdr (the incoming packet header) 
 gives total number of bytes in the request 

◦ N x the following: 
 where N = number of packed requests  

 SubInfoPkt (subscription request) 

 extended string space if any (long device names) 

 input data 

◦ keep looping until the total number of bytes 
have been read. 
 most of the time : N = 1 



Protocol Headers: the Reply 

 producer header (what the client sees) 

44 bytes 



Protocol Headers: the Reply 

 A reply from a server contains: 
◦ totalSizeInBytes as int16 

 (n.b. for CF_STREAM: as int32) 
◦ N x the following: 

 PrdrHdr (returned producer header) 
 associated data if any 
 status string if any (up to 192 bytes) 

◦ Keep looping until totalSizeInBytes has been 
handled. 

◦ Note: packet reassembly vs. packed responses 
 large data set: N = 1 and many packets 
 but: several contracts returning ‘1 float’ can be 

packed! 
 



Protocol Headers: the Reply 

 Some examples … 
◦ a write command : 

 no returned data ! 
 success => just the PrdrHdr 
 failure => PrdrHdr + status string 

◦ a read request (success) : 
 PrdrHdr 
 the data 

◦ a read request (failure) : 
 PrdrHdr 
 status string 

◦ a read request (status != 0 + CE_SENDDATA) : 
 PrdrHdr 
 the data 
 status string 



Protocol Headers: release 5.0 

 Additional information in request (PktHdr)? 
◦ caller pid ? why ? 
◦ others IDs ? 

 client application „type‟ ? 
◦ script, MatLab, middle layer, GUI, etc. 
◦ How to determine this ? 

◦ endianness flag ? 
 or stick with little endian ? 

◦ character encoding flag ? 
 or use UTF8, stick with ascii ? 

◦ anything else ? 
◦ reserved space ? 



Protocol Headers: release 5.0 

 Additional Information in Subscription ? 
◦ use contract tag/id for reassembly packets ? 

 instead of repeating the CONTRACT 

 saves repeating 188 bytes of the mtu size 

 n.b. only need reassembly when sending a large 
data input set. 

 not worth the bother ? 

◦ anything else ? 



Protocol Headers: release 5.0 

 Additional Information in CONTRACT ? 
◦ supply input/output data sizeInBytes ? 

 data size + format do not always uniquely 
determine size in bytes for some data types ! 
◦ CF_STRING, CF_AIMAGE + other adjustable length data 

types (and structures that contain them)! 

◦ the data „tag‟ is currently (mis-)used for this info. 

◦ Maybe: sizeInBytes and sizeInElements ? 

◦ extended string space for property names ? 

 



Protocol Headers: release 5.0 

 Additional information in reply header ? 
◦ as in CONTRACT: need number of elements ! 

◦ anything else ? 



Release 5.0: string lengths 

 Relevant string lengths in these headers: 
◦ DEVICE_NAME_SIZE: 64 bytes 

 the registered device name length! 
◦ queries usually ask for a list of NAME64 items 

 BUT: can use extended space (up to 1024 bytes) 
◦ e.g. requesting a „list‟ of names as in “cdiDev1,cdiDev2,cdiDev3,…” or 

“motor1,motor3,motor5,…” 
◦ Using „DeviceName‟ as a free parameter to supply e.g. a file path 

◦ PROPERTY_NAME_SIZE: 64 bytes 
 the registered property name length! 
 no extended string space option 

◦ EQM_NAME_SIZE: 8 bytes 
 the „local‟ equipment module name 
 historically only 6 characters (NODAL!) have even been used. 

◦ TAG_NAME_SIZE: 16 bytes 
 For tagged structures, bitfields, + some „other‟ cases 

◦ USERNAME_SIZE: 16 bytes 
 parallels the FECNAME_SIZE 
 has always been enough, BUT: 

◦ Windows users name can be 20 characters 

Are these OK ? 



Release 5.0: addresses 

 FEC address structure: 
◦ a FEC manages 1 or more EQM 

◦ an EQM is the internal representation of a device 
server 



Release 5.0: addresses 

 EQM address structure 
◦ principal addressable information: 

 

 

 

 

 

 

 

◦ additional FEC information: 
(not important for client- 

  server communication) 



Release 5.0: string lengths 

 Relevant string lengths in these structures 
◦ FEC_NAME_SIZE: 16 bytes 

 parallels USERNAME_SIZE 

◦ ADDR_SIZE: 16 bytes 

 semi-redundant if IP addr as byte representation 
also present 

◦ SUBSYSTEM_NAME_SIZE: 16 bytes 

◦ CONTEXT_NAME_SIZE: 32 bytes 

 n.b. does NOT appear in protocol headers! 

◦ EXPORT_NAME_SIZE: 32 bytes 

 n.b. does NOT appear in protocol headers! 

 

 



Release 5.0: IPv6 support 

 IPv4: 
◦ 4 bytes 
◦ string representation: e.g. “131.169.151.47” (16 chars) 

 IPv6: 
◦ 16 bytes 
◦ string representation: e.g. 

“2001:0db8:85a3:0000:0000:8a2e:0370:7334” (40 chars) 
◦ 64-bit network prefix + 64-bit interface id 

 IPv4 to IPv6 mapping 
◦ hybrid dual-stack (hybrid sockets) 
◦ 80 „0‟ bits + 16 „1‟ bits + remaining 32 IPv4 bits 
◦ “0000:0000:0000:0000:0000:ffff:83a9:972f” OR 
◦ “::ffff:83a9:972f” OR 
◦ “::ffff:131.169.151.47” 

 Tunneling  
◦ IPv4 only hosts communicating with IPv6 only hosts 



Release 5.0: IPv6 support 

 Proposed FEC 
address 
structure: 
◦ no real IPX 
support 

◦ inetProtocol: 
 UDP, TCP, … 

 UCPv6, 
TCPv6, … 

◦ 96 bytes (was 
64 bytes) 



Release 5.0: IPv6 support 

 Considerations: 
◦ how much hybrid support ? 

 a server listens on IPv6 OR IPv4 sockets but not 
both, etc. 

 use „hybrid sockets‟ ? 

◦ this will also affect the ipnets access lists 

◦ how best to be IPv6 ready ? 



Release 5.0: character sets 

 Currently: 
◦ C-Lib and Java Lib transfer ascii 1-byte chars over 

the net. 

◦ Java Lib API uses unicode char strings. 

◦ C-Lib API uses ascii char strings. 

 BUT VB 6, .NET, MatLab, etc. wrappers use unicode. 

◦ most applications are unaware that they are NOT 
using unicode unless they try to pass e.g. Japanese 
characters. 

 

◦ switch to UTF-8 ? 



Release 5.0: character sets 

 Currently all strings are transferred as 
ascii characters (1 char = 1 byte) 

 UTF8: 
◦ represent all characters in unicode 
◦ variable width encoding 
◦ backward compatible with ascii 
◦ no endianness or byte-order mark problems 

 

acsii 0 – 127: covers English 



Release 5.0: UTF-8 support 

 encode/decode all string data as UTF-8 ? 
◦ also: exposed names such as Device Name, 
Property Name, Context, etc. 

◦ file i/o: convert to locale settings? 

◦ transferred data 

 existing APIs remain unchanged. 

 



Release 5.0: contract coercion 

 Servers can steer inelegant client requests in the right direction. 
◦ BUT the „steering‟ information needs to be registered ! 
◦ SetMinimumAllowedPollingInterval() 
◦ RegisterPropertyInformation(,,, access, array_type, ,,redirection) 

 array_type = CA_CHANNEL   
◦ enforce MCA acquisition 

 access = CA_NETWORK     
◦ enforce multicast access 
◦ also blocks synchronous calls 

 access = CA_STATIC     
◦ block monitors 

 access = CA_NOSYNC     
◦ block synchronous polling 
◦ automatic start of client side listener ? 

 redirection != NULL 
◦ requests to this property go to another server 

 data type = registered structure 
◦ access of a structure field will return entire structure 

◦ RegisterMultiChannelGroupDevice() 
◦ alternative to CA_CHANNEL for strict OO devices 

◦ RedirectDeviceName(,, redirection) 
 redirection != NULL 

◦ requests to this device go to another server 
 



Release 5.0: contract coercion 

 Relevant „hand-shaking‟ status codes: 
◦ caller should never see these ! 
◦ FEC/Server steering: 

 invalid_protocol  < establish communication protocol 
 invalid_interval  < establish polling interval 

◦ property steering: 
 get_subscription_id < listen for multicasts 
 property_is_mca  < provide index to MCA 
 reset_mca_property < when MCA elements change 
 information_static < stops polling of static data 
 server_redirection < redirect request 
 async_access_required < block synchronous acquisition 
 mcast_access_required < require multicast access 
 has_structure_tag < field has underlying structure 

◦ device steering: 
 data_not_local  < wildcard device is not local 
 server_redirection < redirect request 



Release 5.0: contract coercion 

 What are we trying to avoid? 
◦ sending same data set to a long list of clients ! 

 CA_NETWORK 

◦ inefficient/counter productive polling intervals 
 property is being scheduled at a high rate 
 set minimum polling interval 

◦ single element acquisition of a known multi-channel array 
 CA_CHANNEL 

◦ single field acquisition of a known structure 
◦ polling/monitoring static information 

 CA_STATIC 
 e.g. the units are “Amperes” and they aren‟t going to change! 

◦ synchronous polling of something that should be monitored 
 CA_NOSYNC 

 

◦ anything else ? 



Release 5.0: error codes 

 error codes/status codes < 512 are deemed 
„systematic‟ 
◦ not all „errors‟ or „exceptions‟ ! 
◦ some are ancient (date back to the Isolde days) 

 need the „tdc_‟ prefix ? 
◦ some are for handshaking 

 n.b. error codes from a dispatch routine run thru a 
validator ! 

◦ some are informational 
 CE_SENDDATA 

◦ e.g. has_query_function 

◦ some indicate „link‟ or network errors 
◦ some indicate „call‟ errors 

 
◦ do we need more structure in this? 
◦ prune unnecessary codes ? 
◦ any obvious missing codes ? 



Release 5.0: data types 

 Supported data types 
◦ All the „primitives‟ 

 CF_BYTE     1 byte 
◦ byte (some 32-bit C, VB6, java, .NET); also Int8 (.NET) 
◦ Unsigned byte (.NET); also UInt8 (.NET) 

 CF_CHAR (CF_TEXT)   1 byte 
◦ char (C without #define UNICODE, .NET with ansi encoding) 
◦ byte (java, VB6) 

 CF_INT16  (CF_SHORT)   2 bytes 
◦ int (VB6, 16-bit C) 
◦ short (not MatLab); also Int16 (.NET) 
◦ unsigned short (not java, VB6, MatLab); also UInt16 (.NET) 

 CF_INT32 (CF_LONG)   4 bytes 
◦ long (VB6, non 64-bit C, MatLab) 
◦ int (32-bit, 64-bit C, java, Labview); also Int32 (.NET) 
◦ unsigned int, long (32-bit, 64-bit C, Labview); also UInt32 (.NET) 

 CF_INT64 (CF_DLONG)  8 bytes 
◦ long long (UNIX 32-bit C) 
◦ _int64 (WINDOWS 32-bit C) 
◦ long (64-bit C, java, .NET); also Int64 (.NET) 
◦ unsigned long (64-bit C, .NET); also UInt64 (.NET) 

 CF_FLOAT    4 bytes 
◦ float (C, java, .NET) 
◦ single (VB6, LabView) 

 CF_DOUBLE   8 bytes 
◦ double (everybody!) 



Release 5.0: data types 

 Primitives 
◦ do we need explicit „unsigned‟ definitions? 

 it‟s „only‟ a matter of interpretation at the end 
points, BUT you have to know a priori how to 
interpret! 

◦ or: just „do a java‟ and claim everything is 
signed 

 and leave the developer to his tricks… 

 

◦ note: „STRING‟ is NOT a primitive ! 



Release 5.0: data types 

 String types 
◦ CF_CHAR (CF_TEXT) 

 (an array of) 1-byte characters 
 i.e. a string 

◦ CF_NAME8, CF_NAME16, CF_NAME32, …CF_NAME64 
 (an array of) fixed-length (i.e. fixed capacity) strings 
 very good for querying lists 
 very efficient to traverse 

◦ CF_STRING 
 (an array of) mutable strings 
 in C this corresponds to an array of pointers ! 

◦ CF_KEYVALUE 
 (from the doocs world) 
 parallels CF_STRING 
 (an array of) mutable strings of the form “key: value” 

◦ CF_XML 
 (from the doocs world) 
 parallels CF_TEXT 

 



Release 5.0: data types 

 Compound Data Types 
◦ doublets 

 e.g. CF_LTINT, CF_DBLDBL, CF_INTINT, CF_NAME32I, etc. 

◦ triplets 
 e.g. CF_FLTFLTINT, CF_NAME64DBLDBL, etc. 

◦ quads 
 e.g. CF_ADDRESS, CF_FILTER, etc. 

◦ special 
 e.g.  CF_SPECTRUM, CF_IMAGE, etc. 
 Header + designated length of some other type (each element in an array of 

these has the same length) 

◦ adjustable length 
 e.g. CF_ASPECTRUM, CF_AIMAGE, etc. 
 Header + adjustable length of some other type (each element in an array of 

these can have a different length) 

◦ systematic 
 e.g. CF_HISTORY 

◦ (almost) complete overlap with DOOCS data types 
 

◦ remove deprecated types ! 
 e.g.  CF_DBLINT only ever made sense on MSDOS 



Release 5.0: data types 

 tagged structures 
◦ can contain any other data type  

 except CF_HISTORY 
 can also contain „adjustable‟ types 

◦ can be nested 
◦ best practice: use primitives and don‟t nest too deeply 

 .NET:  
◦ has structures 
◦ if structure is „blitable‟ (all primitives) then the block of memory is easily 

accessible and handled more efficiently. 

 MatLab: 
◦ Essentially composed of (arrays of) char, long, and double 

◦ (first order) fields can be read (but not written) independently 
 BUT entire structure is always delivered. 
 do we need to read nested fields independently ? 

◦ „tag‟ and „field‟ names are limited to 16 characters 
 is this a problem ? 
 note: accessing a field => request <property>.<field> 
 restrict <property> length to 64 – 16 characters if data type = 

CF_STRUCT ? 

 



Release 5.0: data types 

 Bitfields 
◦ Applies only to „integer‟ types 

 CF_BITFIELD8, CF_BITFIELD16, CF_BITFIELD32, … 

◦ can be used to enumerate bits 

◦ can also give names to „fields‟ of bits 

◦ can read any field independently 

◦ WRITE commands pass the data sent to the 
dispatch handler as is. 

◦ How to WRITE bits (bit fields) independently? 

 Somehow pass the „field‟ or field mask to the dispatch? 

◦ Note: the .BIT.x meta-properties have some 
overlap here. 



Release 5.0: performance issues 

 Tweaking Performance 
◦ Quality of Service 

 UDP, TCP, STREAM, PIPEs and MMFs 

◦ threads 
 priorities 

◦ default settings 
 LAZY vs. EAGER scheduling 
 flow control parameters for UDP 
 thread priorities and synchronization 
 deadbands, timeouts 
 lingering canceled contracts 
 default table lengths 

◦ client, contract, connection tables … 
◦ resources_exhausted ? 
◦ use ArrayLists in java after all ? 

◦ bottlenecks ? 
 eqm dispatch is synchronized 

◦ but can run on separate thread if needed (other calls would get „operation_busy‟ rather 
than a „link_timeout‟). 

◦ can also return „not_ready‟ 
◦ Can optionally synchronize with the background dispatch. 

 

◦ Other issues? 



Release 5.0: redirection/groups 

 Redirection: 
◦ from any /context/server/device[property] to any other 

/context/server/device[property]. 
 requires „status string‟ to be up to 192 bytes. 
 no „long‟ device name allowed here! 

 Group Equipment Name Server (GENS)  
◦ redirects the device entries in its database to the appropriate 

target server. 
◦ needs device „metric‟ if the device order is important 
◦ Can apply device name pre- and post-fixes to avoid device name 

collisions if necessary. 

 Archive System 
◦ central archive redirects back to device server for „local‟ history 

information 
◦ device server redirects to central archive of „.ARCH‟ meta-

properties 
 

 redirection issues ? 



Release 5.0: hot swapping 

 hot swapping devices 
◦ use 

 RegisterDeviceName(), AssignNumDevices(), 
SetSizeDeviceCapacity() 

 should call ResetMultiChannelProperty() if hot 
swapping a device within an MCA 

◦ any issues ? 

 adding/editing settings on-the-fly 
◦ local histories 
◦ alarm watches 
◦ units, max/min settings 

 additions/edits are currently „volatile‟. 
 save the changes ? 

◦ there‟s not always a config file! 



Release 5.0: failover 

 Software failover of device server 
◦ 2 servers with identical functionality 

 e.g. /PETRA/Idc.OR08 and /PETRA/Idc.OR19 
 one is declared master 

◦ Registers itself a 2nd time with a „common‟ name 
◦ e.g. as /PETRA/Idc 

 one is declared slave 
◦ monitors the master 

◦ failure of master: triggers the slave to register as master 
◦ return of real master: should resume its role! 
◦ running client will experience a down time on the order 

of minutes. 
◦ „best source‟ scheme (vs. load balancing scheme). 
◦ Should this be configurable? 

 e.g. best source or load balancing 



Release 5.0: configuration 

 Configuration options 
◦ Clients need to resolve addresses ! 

 without ENS (Equipment Name Server) 
◦ run in stand-alone mode (TINE_STANDALONE=TRUE) 

 use the „dynamic‟ cache  
 explicit instruction NOT to use the ENS 

◦ use a „local‟ database repository 
 TINE_HOME points to it 

 with ENS(es) 
◦ need to „find‟ the ENS(es) 

 TINE_HOME -> cshosts.csv (contains known address) 
 TINE_ENS specifies it 
 DNS + „tineens‟ 
 multicast: „ENS where are you?‟ 
 assign via API 

 

 any other ideas ? 



Release 5.0: configuration 

 Configuration options 
◦ servers can register all info via API 

 and some do ! 
◦ all doocs servers 
◦ epics2tine 
◦ tango2tine 
◦ etc. 

◦ else  
 FEC_HOME points to FEC database repository 
 can use xml as database (fec.xml) or .csv files. 
 can also use API registration as well. 

◦ but 
 save-and-restore only uses .csv files 
 and uses the FEC_HOME repository 

 
◦ any issues ? 



Release 5.0: configuration 

 csv File configuration 
◦ FEC_HOME points to repository 
◦ fecid.csv found there : FEC name and port 

 issues with fecid.csv ? 

◦ each registered equipment module (EQM) has a 
subdirectory given by its process-„local‟ EQM name (6 
characters) 
 e.g. ./BLMEQM 
 exports.csv : export (server) name, property info 
 devices.csv : device names + info 
 users.csv  : allowed users (and groups) 
 history.csv : local history info 
 alarms.csv, almwatch.csv : alarm system info 
 ipnets.csv : allowed net addresses 
 + <property>-users.csv, <device>-users.csv, etc. 
 + save-and-restore files 

◦ backward compatibility: 
 also see if these files exist directly under FEC_HOME area ! 



Release 5.0: configuration 

 exports.csv 
◦ spreadsheet like 

 focus on: exported property information 
 => no hierarchy ! 
 some column-repeated information: 

◦ context, export name, number devices, etc. 

 max, min, units now parsed from description 
◦ Provide extra optional columns ? 

 MAX, MIN, UNITS, XMAX, XMIN, XUNITS ? 

 fec.xml 
◦ is hierarchical 
◦ same tags as .csv columns 
◦ all info in 1 large file  

 a bit more cumbersome to auto-update 
 no possibility of e.g. inserting a history.csv file „under‟ a 

server. 



Release 5.0: configuration 

 dynamic cache location ?  
◦ use an environment variable ? 

◦ current defaults: 

 Win32:  %SystemDrive%:\tine\cache 

 unix: /var/tmp/tine/cache 
◦ but this is cleared on reboot of host 

◦ check for /var/tine/cache (with o:rw)? 



Release 5.0: hooks 

 hooks to additional resources ? 
◦ currently: hook for external fd (sockets) sets 

◦ Others ? 

 e.g. a hook for a real-time delay : rtdelay() ? 

 



Properties and Devices 



Properties and Devices 

 Properties 
◦ are methods ! 
◦ provide the essential point of contact to the 
equipment module dispatch handler 
 no property -> no dispatch ! 

◦ can have access control lists 
◦ have meta information 
 canonical data size and type 

 units 

 max and min settings 

 etc.  



Properties and Devices 

 Properties 



Properties and Devices 

 Questions: 
◦ Do we want to distinguish between  
  max and min „display‟ settings  
  and  
  max and min „set point‟ settings ? 
 
◦ Should there be an (optional) „automatic‟ 
out_of_range check if attempt to WRITE a 
value past the set points ? 
 

◦ Any other missing meta-attributes ? 



Properties and Devices 

 meta properties 
◦ property name + up to 4 char meta extension 

 e.g. 
◦ LossRates.HIST (history of property “LossRates”) 
◦ Charge.EGU  (engineering units of “Charge”) 
◦ Orbit.X.NAM (associated channel names for “Orbit.X”) 
◦ Trace.XMIN (x-axis min value for “Trace”) 
◦ etc. 

◦ gated meta properties 
 e.g. 

◦ Status.BIT.3 (bit 3 of „integer‟ property “Status”) 
◦ Register.MASK.0x7 (value of “Register” masked by 0x07) 
◦ Status.Gate.0xae (binary output of “Status” gated against 0xae) 

 Coming soon: 
◦ Pressure.DMASK.3 (MCA returns those devices whose device mask is 

„3‟ – doocs SYS_MASK) 
◦ Pressure.DMASK.3.NAM (MCA device names whose device mask is 3) 
◦ Possible enumerations for the „3‟ ? 

 e.g. Pressure.DMASK.turbo 



Properties and Devices 

 Multi-Channel Array (MCA) properties 
◦ Required behavior 

 must supply an array of equal length and corresponding to either 
◦ 1) the registered device list 
◦ 2) an assigned device list  

 see AssignDeviceListToProperty() 
◦ 3) another registered property of the same name but with the meta-

extension “.NAM”. 

 note: using either 2) or 3) above automatically flags the server 
as having „property query precedence‟ (i.e. a „property server‟ 
instead of a „device server‟). 

 must accept the contract‟s „DeviceName‟ as the starting point in 
the MCA and return the number of elements requested. 
◦ often 1 element OR all elements starting at the beginning. 
◦ the dispatch can wrap past the end or truncate the call as desired. 

◦ can also make use of RegisterMultiChannelGroupDevice() if 
there is a hard device query precedence! 



Properties and Devices 

 Devices 
◦ may or may not refer to hardware devices 

◦ can have: 
 property lists  

◦ which of the registered properties are supported by this 
device ? 

◦ flags the server as having device query precedence. 

 access control lists 

 description 

 location 

 Alarm lists 

 mask (doocs SYS_MASK) 

 Z (longitudinal) position 



Properties and Devices 

 Any open issues? 
◦ wildcard support ? 

 both DeviceName and PropertyName support 
wildcard calls. 

 



Security 



Security 

 TINE security based on 
◦ user name  

 those 16 bytes in the PktHdr 
 to do: use API instead of USERNAME env. 
 done in 4.2.3: allow groups 

◦ e.g. server can allow all members of „mhfe_user‟ 

◦ network address 
 from the ethernet packet 
 single address or range 

 3 Levels (cumulative) 
◦ server 
◦ property 
◦ Device 

 Access Locks 
◦ Only the client with the token is allowed access 

 Exclusive Read 
◦ A property can register XREAD in its access parameter 
◦ XREAD and READ together require an Access lock to be in effect. 



Security 

 Assigning the ACL information 
◦ via API 

 e.g. AssignDeviceAccessList() 

◦ via database configuration file 

 fec.xml (not yet!)  
◦ => Stock properties to ADD/REMOVE ACL items update 

the .csv files! 

 e.g. „users.csv‟, <deviceName>-ipnets.csv, etc. 
◦ Trying to minimize „scanning for files‟ at startup by first 

checking directory for „*-ipnets.csv‟, „*-users.csv‟ 

◦ other/better solutions? 
 



DOOCS compatibility 



DOOCS compatibility 

 Issues 
◦ most pure acquisition features are mapped ! 

 data type mapping is 99% 
◦ exotic history data types (in progress) 
◦ TINE struct and bitfield not supported in doocs 

 how much of a problem is that ? 

◦ full function mapping still an issue 
 e.g. calling P.HIST on a doocs server over a time range, 

asking for a single int32 value will fail 
◦ TINE returns the number of points in the interval 

 many such „gotcha‟s, but mostly at this (2nd tier) level 
◦ security (a persistent bother) 

 doocs server must supply the gid/uid of the „resolved‟ 
user seen in the TINE PktHdr. 
◦ A FEC middle layer will supply the FEC name (definitely not 

resolvable). 
◦ Solution:  FEC call to a doocs server can set the doocs user to the 

logged in user (who is hopefully resolvable). 



DOOCS compatibility 

 Issues (continued) 
◦ „hidden‟ stock properties in TINE 

 very easy to „unhide‟ at the browser (e.g. rpc_test): just show them. 

◦ „hidden‟ meta-properties in TINE 

 A bit trickier to „unhide‟ only the „relevant‟ ones 
◦ acquire full property query information 

◦ e.g. if „prpHistoryDepthShort‟ > 0 then show <property>.HIST in the browser. 

◦ e.g. if max or min != 0 or units != “” then show <property>.EGU in the browser. 

◦ etc. 

◦ some doocs „favorites‟ could be added to the meta-property soup: 

 .SYS_MASK will appear in 4.2.3 

 what else ? 

◦ property servers 

 browse differently ! 

 trap the „has_query_function‟ status with a call to DEVICES 

 Fill in „locations‟ with the results of <property>.NAM at each change of 
property. 



DOOCS compatibility 

 Issues (continued) 
◦ configuration 

 server administrator must remember to set the SVR.GROUP if server is a 
member of a group 
◦ e.g. group server BLM consists of 3 servers BLM.1, BLM.2, BLM.3 running on 

different hosts. 

 should take time to set SVR.TINEFEC  
◦ provide a „sensible‟ FEC name (e.g. “PEVACFEC”) to avoid the automatic name of 

e.g. “Io83a997ab.1f8” 

 make use of SVR.TINEPREF and/or SVR.TINESUFF to decorate a device 
server name to avoid collisions or ambiguity 
◦ e.g. SVR.TINEPREF “LASER.” would register a server “LASER.ADCSCOPE” instead 

of “ADCSCOPE” 

◦ subsystem decorated contexts 
 PETRA.VAC without subsystem leads to context “PETRA” and the server 

belongs to subsystem “VAC”. 
 address resolution does not care: 

◦ e.g. /PETRA.VAC/IonPump and /PETRA/IonPump both resolve to same server 

 could lead to name collisions in TINE (unless e.g. SVR.TINEPREFF was 
used) 

 supply a subsystem => the decoration will not be removed 
◦ but then we end up with a slough of contexts which nominally belong to the same 

facility. 



DOOCS compatibility 

 Issues (continued) 
◦ nice to have: 

 recognize and register MCA properties. 

 Fill in the „system stamp‟ and/or „user stamp‟ with 
e.g. pulse number 

 

 



Platforms and APIs 



Platforms and APIs 

 Supported Platforms 
◦ Any reason to continue supporting DOS, 
Win16? 

 if release 3.xx is still supported, they will work 

◦ VMS may or may not still work 

◦ Anything else needed? 

 RTEMS ? 

 android ? 

◦ Embedded issues ? 

 is there a disk ? 

 



Platforms and APIs 

 Language support 
◦ C, C++, C# (and .NET), Java 

 native libraries:  C and Java 
 everything else interops with the C library 
 C-Lib can be single threaded (tine.dll, libtine.so) or multi-threaded (tinemt.dll, 

libtinemt.so) 

◦ Delphi (Lazarus) 
 based on C Lib 
 visual pascal 

◦ LabView 
 based on C Lib 

◦ MatLab 
 official „mex‟ routines based on C Lib 
 could also use the java Lib  
 octave ? 
 experiences ? 

◦ Python 
 PyQt, IPython ? 

◦ Perl ? 
◦ Functional languages? 

 Scala, F# 



Platforms and APIs 

 API primarily based on the idea of 
◦ a Contract 
 the requested action/information from the target 

◦ a Link 
 connects the results of the action to the process 
data 

 specifies a transport mode 
◦ SINGLE (asynchronous or synchronous) 
◦ TIMER   (POLL) 
◦ DATACHANGE  (REFRESH) 
◦ EVENT 
◦ RECEIVE  

 



Platforms and APIs 

 APIs 
◦ C and Java APIs are well known 

 cardinal rule: don’t break the API! 
 C API is NOT object oriented 

◦ suffers a bit from lack of „overloading‟ 
 extended routines:  

◦ e.g. RegisterDeviceEx(), AttachLinkEx2() 

 Java IS and makes use of a Link Object with data 
acquisition methods ! 

 both: data is always passed by reference 
◦ => in Java a scalar is an array of 1 (MatLab does this too!) 

 what is missing, wrong, useless ? 
 

◦ „Official‟ C++ API ? 
 (currently there are several) 

 



Platforms and APIs 

 APIs (continued) 
◦ C# and .NET interop with the C Lib but model the API on 

Java. 
 except: everything (even primitives) really is an object 

and you can pass by reference ! 
 structures are easiest in .NET 

◦ note: with the „interop‟ there must be a platform specific 
library „tinemt.dll‟ or „libtinemt.so‟ on the path ! 
 then can compile with „anyCPU‟ 

◦ ACOP 
 graphics API designed for control 
 originally a common transport API 

◦ ACOP ActiveX support(ed)  
 TINE, CA, MKI, CDI, ISOLDE, ConSys, etc. 

◦ acopbeans supports only TINE (and simulation) 
 but with a bit of refactoring ?  

◦ Interest at KEK to get/set STARS via acopbeans. 
◦ ACOP.NET is in prototype 



Platforms and APIs 

 ezTine API ? 
◦ model on buffered API ? 



Platforms and APIs 

 Web Tools 
◦ Web2C ? 

◦ PhP ? 

◦ .NET, silverlight ? 

◦ browser plugin ? 

 instead of http://something.desy.de 

 tine://context/server/device/property 

 

http://something.desy.de/


Platforms and APIs 

 Command Line tools 
◦ frequently used in scripts 
◦ can become problematic: 

 each tget needs to resolve an address 
◦ contacts the ENS to get the address 
◦ makes the synchronous call to get the data it wants 
◦ then exits and forgets everything 

◦ a forgotten solution: 
 a local repeater runs in the background on the local 

host 
 „tget‟ first checks for a repeater 

◦ exists:  
 get data from repeater 
 repeater caches the target address and maintains a static 

listener 
◦ doesn‟t exist: 

 do it the brute force way 



Central Services 



Central Services 

 Some have direct relevance to TINE Lib 
◦ e.g. a starting server clears its alarms  

 if the call to “/<myContext>/CAS/RemoveAlarms” is 
successful -> Yes, the CAS is monitoring me ! 

◦ TINE time synchronization expects 
“/SITE/TIMESRV” to exist 
 if not: no TINE time synchronization 

◦ if “/<myContext>/Cycler” exists apply the incoming 
cycle number global to my „system stamp‟. 

◦ redirect any “<property>.ARCH” call to 
“/<myContext>/HISTORY” 

◦ etc. 



Central Services 

 Any issues with : 
◦ naming (ENS/GENS) ? 
◦ archive system (ARCHIVER/HISTORY) ? 
◦ post mortem/event (EVENTS) system ? 
◦ globals system (GLOBALS) ? 
◦ alarm (CAS/ALMSTATE) system ? 
◦ state system (STATE) ? 
◦ statistics system (FECSTATS) ? 
◦ central logging system (CLOG) ? 
◦ spy system (CSSPY) ? 

 viewing tools, GUIs ? 
 specific APIs 

◦ how do I get this/that from the  
 ENS ? 
 CAS ? 
 etc. 



Standard Servers 

 Standard semi-off the shelf servers 
◦ motor server 

◦ scope server 

◦ video server 

◦ any other „off the shelf' servers ? 

◦ scan server ? 

◦ sequencer 

◦ FSM ? 

◦ USC (universal slow control) 

 

◦ tine repeater 



Video System 

 Client-side C library with codecs and other 
tools? 

 Any other issues? 



Peripheral Applications 

 watchdogs  
◦ win32: wdog 

◦ Linux : autoproc 

◦ what should they be able to do? 

 remote restart daemons 
◦ wdog, autoproc can do this 

◦ VxWorks restart task 

 application managers ? 



diagnostics and logging 



diagnostics and logging 

 tracing problems … 
◦ general setup (“nothing works”) problems 

 TINE setup checker (in progress) 
◦ dump relevant environment variables 
◦ check connectivity to ENS 
◦ check manifest 
◦ check firewall settings 
◦ etc. 

◦ Log files 
 location given by FEC_LOG 
 C-Lib:  

◦ fec.log (1 rotation into fec.bak) 
◦ LF-CR as per OS 
◦ format suggestions ? 

 <time> [fec name] (log entry) 

 time zone in <time> constrained to 3 char => standard length 

 Java: 
◦ Uses java.util.logging.FileHandler 
◦ LF only 
◦ fec.log.0 (rotates into fec.log.x) 
◦ time zone as per JVM locale (e.g. “CET” and “CEST”) => non-standard length 

 all WRITE commands logged by default 
 comments/ suggestions ? 

 



diagnostics and logging 

 tracing problems … 
◦ attachfec 

 normally uses a local PIPE into the FEC process 
◦ use the FEC name as the PIPE name 

 allows remote access to FEC 

 can also attach to a local client process 
◦ use the pid as the PIPE name 

◦ comments/suggestions ? 



Low Level interfaces 

 CDI 
◦ active as well as passive CDI servers ? 

◦ a CDI is a „property server‟ 

 need a „device server view‟? 

◦ any issues ? 

 TICOM 
◦ any issues ? 



Documentation and Forums 

 basic web site (http://tine.desy.de) 
◦ straight-up doxygen generated 

◦ other look and feel ? 

◦ organizational issues ? 

◦ tutorials ? 

◦ application videos ? 

 mantis (http://tinetracker.desy.de) 

 phpbb  (http://tineforum.desy.de) 

 wiki ? 

 

http://tine.desy.de/
http://tine.desy.de/
http://tinetracker.desy.de/
http://tinetracker.desy.de/
http://tineforum.desy.de/


Distribution and Repositories 

 .zip and .tar files 

 .deb, .rpm, .msi ? 

 'setup'  scripts ? 

 SVN accessibility ? 

 



Tentative Conclusions 

 Where do we go from here ? 



Request header: PktHdr new fields 

 HeaderSize 
 pid 
 Endianness 
 Character encoding flag ? (probably not 

necessary) 
 Application „string‟ (maybe 64 bytes) 

◦ a short „tag‟: 
 A middle layer : “FEC” 
 A „wrapped‟ application: e.g. “MatLab”, “Python”, 

“Web2C”, “LabView”, etc. 
◦ + process name 

 Reserved fields (not necessary if HeaderSize is in 
header) 

 



Response Header 

 Also needs a PktHdr: We forgot about 
this! 

 Those initial 2 bytes (totalSizeInBytes as 
UINT16) should become a response 
header with: 
◦ totalSizeInBytes 

◦ HeaderSize 

◦ endianness 

◦ FEC name  

 

 



Other items … 

 sizeInBytes, sizeInElements on request and response 
 

 settable mtu on request side 
 

 unsigned integer format definitions 
◦ CF_UINT8, CF_UINT16, CF_UINT32, etc. 

 

 display AND setpoint max/min settings ? 
◦ NO: one set of max, min 
◦ Can be used for setpoints via call to AssertRangeValid() if developer wants 

 
 return code  

◦ categorize which return codes an EQM is allowed to use 
◦ structures 

 status, return code, return source at server, etc. 

◦ => don't break current API ! 
◦ Java: optional unchecked exceptions ? 

 If „some boolean flag‟ = true then e.g. throw tineIoException() ? 

 



software failover 

 Is „best source‟ ! 

 

 Could do load-balancing this way: 
◦ Instead of “master/slave” use 
“primary/secondary” 

◦ primary monitors secondary's NCLIENTS 

◦ primary needs to redirect to secondary if  

 my NCLIENTS >> his NCLIENTS 

 

 



Port Offset 

 API to GetMyPortOffset( FECNAME ) 
◦ Check local manifest 

 Found FECNAME -> return assigned port 

 Not found -> return „next free port‟ 

◦ Could also check with the ENS ? 

 

◦ Note the /var/tmp area on Unix is not a good spot 
for the manifest. 
 Try env variable  

 Then try /var/tine/cache directly   

 Then resort to /var/tmp/tine/cache 

 Or service daemon ?  



Meta Properties 

 Stock property to return useable Meta-
Properties 
◦ “METAPROPERTIES” ? 

◦ “FILLEDMETAPROPERTIES” ? 

 

◦ Also use in Instant Client 

 (show available meta properties check box) 



API for dummies and profis 

 EZTINE  
◦ Based on „buffered API‟ ? 
◦ Small < 2 pizza) committee to agree on a reduced set of 

simple API calls (+ tutorial) 

 C++ 
◦ Small (< 2 pizza) committee to agree on a C++ API 
◦ Special aside: use UNASSIGNED_CALLBACK as callbackId in 

AttachLinkEx() or AttachLinkEx2() to receive the link Id. 
 

 Java 
◦ Remove „final‟ from TLink object, etc. 
◦ New API calls that throw checked exceptions ?  

 (Ahhh, now that‟s java!) 

◦ vs. optional unchecked exceptions ?  
 (violates „official‟ java style) 



Other stuff 

 MatLab API 
◦ Java or C++ ? 

 

 Command line tools (especially tget): 
◦ Make use of (old) local tineRepeater daemon 

 

 


