TINE Collabora
Meeting 2

If your software project team can eat more than two
pizzas, then it is too large!

Release 5.0 Requirements

Properties and Devices

Security

DOOCS compatibility

Supported Platforms and APIs (including Web)
Central Services

Standard servers

Video system

Peripheral Applications (watchdogs, etc.)
Diagnostics and logging

CDI, TICOM, + other low-level interfaces
Documentation and Forums

Distribution / Repositories

protocol headers
new protocol headers => new major release !

string lengths

contract coercion

error codes

supported data types

performance criteria

redirection / server groups
hot-swapping / fail-over / redundancy
configuration database

‘hooks’ to additional services

all client requests begin with a packet
header:

* ~internal

* “brief The top lewel header which defines the incoming data packet.

*

* “todo =plit totalSize away from the header. Thi=z will involve a good loolk
at the routines in swaplib.c. The adwvantage of doing this i= primarily to
deal with a PktHdr with fields on a 4-bvte boundarvy. The first two

#* bytez of what has come in dosesn't need to be a part of this header. BUT.

=zplitting thi=s off from the header has lov priority.

3*

*.

typedef =truct % =struct iz pas=ed over the net *-

TIHT16 totalSize; ~#**¢ total packet =ize in bvtes (must match the bvtes read)] =7
char userHame[TSEENAME SIZE]; %% caller namns *-
short tineProtocol: ~#%:{ tine protocol level (modern: 6 for contracts., 4 for globals) #-
TIHT16 number; ~%*%< tine wers=ion nhumnber (contract=) or number of incoming keywords (global=s) *-
» } PltHdr;
#define PETHDE _SIZE 22
#define SUB_PROT_LOCATION 148

#define LWKTEL _HASH SIZE 211

And it's been like this since
the Isolde days !

#define REVISIONID(m.r) {(m)*256 + (r))

SR

* “~internal

~brief callbaclk prototypes

*

typedef woid (*TCEFCHE)(int.int):

typedef wvoid (#XTCBEFCHE)(int.int.woid =) ;

‘tineProtocol’ field tells the server which tine
protocol the client wants to speak!

A legacy server will respond with ‘illegal_protocol” if
the requested level is too high (or too low).

- e.g.#1: release 4 client contacts release 3 server

° client receive ‘illegal_protocol’ and tries again with release
3 headers

° everyone is happy ! ©
- e.g. #2: release 3 client contacts release 4 server
> server is willing to work with release 3 headers
° everyone is happy ! ©
Note: a release 4 server is NOT willing to use
release 2 headers !

Points:

In order for backward/forward compatibility to work, the
‘tineProtocol’ field must always be in the same spot in
the packet header !

So ‘user name’ is always 16 characters or less !

- Is this an issue ? (see 'String lengths’ later).

- (actually not really true: just need byte 18 to point to the
protocol level)

It's probably time to split off the ‘totalSize’ field from the
header definition (or not?).

- totalSize is an unsigned short => maximum 65535 bytes
- tine does its own packet reassembly => not a problem!

This also happens in Java, but the incoming/outgoing
byte streams are mapped into fields in a class

- Java does not have structures
- Java does not have unsigned integers

= public TReqgHdr (hyte[] data,int off, int len)
{ // prepare incoming

int bytesread = 0;

try

i
EvtelrravInput3tream dinBuffer = new EBEyteldrravInputitream(data,off, len):;
Datalnputitream ds = new Datalnputitream(dinBuffer):;
Af owerall message length: .
totallicelInBytes = 3wap.Short(ds.readlhort()): < SIgﬂEd Short
hvtesread = 2
Arrays.fillibstr, (hyte)0);
while (bytesread < hdrSizelnByites)
i

ds.read(bhstr,0,16);

username = [(new Itring(hstr)).trim():;
LineProtocol = S3wap.Skort(ds.read3hort ()] :
revizionld = Zwap.Shortids.readShorti()l):

hyvtesread += 20:
h
ds.closel);
dinEuffer.cloze () ;
}
catch [IOException e)
i
e.print3tackTrace()
HsgLDg.logi"TRequr",e.tDString(],TEerrList.codq_failure,e,ﬂ]:

]

tocol Headers: packet head

MTUs

Response (server -> client)
- settable: 512 -> 64 K
- default : 1472

Request (client -> server)

- settable only in C and only at compile time
- default: 1472

- some builds (NIOS) had 1000 bytes

- note: client requests rarely send large data sets to
server !

- => also allow this to be settable !
° (and fix the java code)

Subscription Header from client
can be packed (multiple requests in a packet)

any packet reassembly (due to long input data)
must recognize the contract !

SRR
* “internal

* “brief Contract header struct
*

* =ztruct 1= paszsed ower the net | tineProtocol 6 (in)d
*.7
tyvpedef =truct subscription

UINT16 nEgslze; <#%{ total message =ize in bytes =7

TIHT1a eEtzize; ~*®%{ gEtended =tring =pace *-

TIHNT16 mti; %L maxKimumn transport unit for incoming data o

UINT1e numblls=s; <#%{ total number of message blocks *®-

TIHNT16 bllnuam; %%, block number of thisz message *-

UIHT16 id; ~#% bloclk id =~

zhort node: <% requested transfer node (e.g9. CH_TIMER, CHM_DATACHANGE) =~
zhort bllkid; <%®%{ [incremented) block id =~

OINT32 pollingInterval ~#%;{ regquested polling interval in msec *7

TINT3Z2 starttime; ~*®%y [UTC starttime of the contract (=zent from client) *-
CONTRACT contract: ~%®%{ Contract regquest *®7

} SublInfoFlkt:

#def ine SUBINFO_SIZE (G=2+2+44CONTRACT SIZE) 212 bytes
#define SUE_MODE ILOCATION (PKTHDE_SIZE + 23

The contract structure:

together with input data uniquely specifies the
call |

EgmDeviceName ends with '&" => use
extended string space.

~internal
~brief Contract input header for protocol lewvel b6

e

LI B I A

structure 1= passed over the net

*

*®,
typedef =struct
1

char EgqnPropertv [FEOPERTY _HAME _SIFZE]: ~#%{ regquested propsrty #*7
char EqmnDeviceNamse[DEVICE_HAME SIZE]. /#%¢ regquested device %~

char EgqnHame[EQM_NAME SIFE]: <¥%: requested local egn nams *°
UIHNT3Z2 EgmSizeln: <%%{ 1nput data size *7
TIHT32 EgqnSizeOut: S%®%: output data size *7
BYTE hEgqnName ; <#%: handle to egm name [(unus=ed) =
BYTE Eqmniccess; <%%{ requested access (CA_READ stc) =7
BYTE EqnFormatIn: <¥®%: 1nput data format *-
BYTE EgqnFormatOut ; %% gutput data format =7
char strTagln[TAG_NAME SIZE]: <%%{ 1nput data tag =7 188 bytes
char strTagOut [TAG_HAME SIFE]: a2 output data tag =
} COHTRACT;

#define CONTRACT SIZE (PROPERTY_WAME STZE+4+DEVICE WAME STZE+EQM HWAME STZE4+4%244%x142xTAG _HNAME STZE)

A request from a client contains:

PktHdr (the incoming packet header)

- gives total number of bytes in the request

N x the following:

- where N = number of packed requests

- SubInfoPkt (subscription request)

- extended string space if any (long device names)
- Input data

keep looping until the total number of bytes
have been read.

- most of thetime : N =1

producer header (what the client sees)

fcon thl 1d) =~

above) =
(@ byte 200%*s

44 bytes

SEIE
® ~internal
#* “brief producer header struct (reply to client)
*
* =ztruct 1= pass=ed owver the net | tineProtocol & (out)
*
* .
typedef struct
TIHT16 m=g=ize; SEEL MEZ=AJS =1Te 1h bytes #-
UINT16 =ubld: <#%{ zupplied by the consumer upon regisztration
TIHNT1le CompletionCode; <#*#%< return completion code from the sgm *®7
TIHNT16 numblls; %% total number of message blocks *7
UINT16 bllnum: <#%{ block number of this mnessage *®-
TINT16 mtu; SE¥EL mAaKimun transport unit
TINT1l6 EgmFormat ~#%{ format of returnsed data =7
TIHT1le counter: ~%®%{ =zubzcription counter (how much i= left) =7
TIHNT1l6 tinseProtocol; <%®%{ tine protocol lewel =7
UINT1le =mferReason: ~#%y{ trans=fer reaszon flag {one of the CEI_ codes
TIHNT32 ClnStarttime; %%, zupplied by the consumer upon registration
TIHT16 =t==size; <%®%{ =zizEe of error-sstatus string space #7
TINT1E =st=code: SE¥{ access status code *®7
TIHNT32 timestamnp: <%®%{ data timestanp *
TINT32 timestanplUSec; %% usec fraction of data timestanp *-
TINT32 u=zerstamnp: ~%®%{ application =etable data =s=tamnp *-
TIHNT32 =v=stamnp: <%®%{ zyztenatic data =tanp *
} PrdrHdr;
#define PHDE_SIZE (12#*2+5#%4)
fdefine PHTU(m.np.tp) (DGHTU(m.np.tp) — {{tp) == § ? PHDRS_SIZE : PHDR'—oz=r == IHT16))
#def ine PHDE_STTH_OFFSET 20
#def ine PHDE_PROT OFFSET 1o

M e L oo -

T T T T AT T A

A reply from a server contains:

totalSizeInBytes as intl6

- (n.b. for CF_STREAM: as int32)

N x the following:

* PrdrHdr (returned producer header)

- associated data if any

- status string if any (up to 192 bytes)

Keep looping until totalSizeInBytes has been
handled.

Note: packet reassembly vs. packed responses
- large data set: N = 1 and many packets

- but: several contracts returning '1 float” can be
packed!

Some examples ...
a write command
- no returned data !
- success => just the PrdrHdr
- failure => PrdrHdr + status string
a read request (success) :
* PrdrHdr
- the data
a read request (failure) :
- PrdrHdr
- status string
a read request (status '= 0 + CE_SENDDATA) :
- PrdrHdr
- the data
- status string

Additional information in request (PktHdr)?
caller pid ? why ?
others IDs ?
- client application ‘type’ ?
> script, MatLab, middle layer, GUI, etc.
> How to determine this ?

endianness flag ?

- or stick with little endian ?
character encoding flag ?

- or use UTFS8, stick with ascii ?
anything else ?

reserved space ?

typedef struct -# =struct 1= passed over the net *-

TIHNT16e totalSize; #*#%¢ total paclet =ize in bytes (mu=st match the bytes read) *-7
char userHame[USERHAHME SIFE]: ~#%¢ caller namns *-
short tineProtocol: %% tine protocol lewvel (nodern: 6 for contract=s, 4 for globals) =7

TIHNT16 number; ~<#%:{ tine verzion humnber (contract=z=) or number of incoming kevwords (global=s) #7
+ FltHdr;

TTETTTTAT T T Y

Additional Information in Subscription ?

use contract tag/id for reassembly packets ?

- instead of repeating the CONTRACT

- saves repeating 188 bytes of the mtu size

- n.b. only need reassembly when sending a large
data input set.

- not worth the bother ?

anything else ?

Additional Information in CONTRACT ?

supply input/output data sizeInBytes ?

- data size + format do not always uniquely
determine size in bytes for some data types !

° CF_STRING, CF_AIMAGE + other adjustable length data
types (and structures that contain them)!

> the data ‘tag’ is currently (mis-)used for this info.
Maybe: sizelnBytes and sizelnElements ?
extended string space for property names ?

Additional information in reply header ?
as in CONTRACT: need number of elements !
anything else ?

typedef struct
1

TIHT16 m=Eg=s=ize; S¥E¥L MEZ=AJE =1TEe 1h byvtes *®7

TINT1e =ubld; <#%{ zupplied by the consumer upon registration (con tbhl id) =~
TIHNT1le CompletionCode; ~#*%¢ return completion code from the sgm *7

TIHT16 numblls=; <#®%#{ total number of messzage blocks *-

UINT16 bllnum: <#%{ block number of this mnessage *-

TIHT16 mtu; AS¥®¥L mAaEimumn transport unit %S

TINT16 EgmFormat ~#®%{ format of returned data =~

TINT1E counter: <#%{ zubscription counter (how much 1= left) *-

TIHNT16 tineProtocol; <%®%¥{ tine protocol lewvel =

TINT1le =mferReason: ~#%{ transfer reaszon f{lag {(one of the CE_ codes above) =~
TIHT3Z ClnStarttine: ~%®%{ =zupplied by the consumer upon registration (@ byte 20)%7
TIHNT1Ee =t==ize; <%®%{ =z1re of error-=statusz =tring space *7

TINT1lEe =st=code: <%%{ aocessz status code *®7

TINT3Z timestamp: ~%®%{ data timestanp *

TIHNT3Z timestamplSec; <#*##%#¢ p=zec fraction of data timestamp *-

TINT3Z userstamp: <#%{ application setable data =stamp *-

TINT3Z =v=stamp; <*®%{ zyztenatic data s=tamp *

T PrdrHdr;

Relevant string lengths in these headers:
DEVICE_NAME_SIZE: 64 bytes

- the registered device name length!
° queries usually ask for a list of NAME64 items

- BUT: can use extended space (up to 1024 bytes)

° e.g. requesting a ‘list’ of names as in “cdiDev1l,cdiDev2,cdiDev3,...” or
“motorl,motor3, motor5,..."

° Using ‘DeviceName’ as a free parameter to supply e.g. a file path

PROPERTY_NAME_SIZE: 64 bytes

- the registered property name length!

- no extended string space option

EQM_NAME_SIZE: 8 bytes

- the ‘local’ equipment module name

- historically only 6 characters (NODAL!) have even been used.
TAG_NAME_SIZE: 16 bytes

- For tagged structures, bitfields, + some ‘other’ cases
USERNAME_SIZE: 16 bytes

. parallels the FECNAME_SIZE Are these OK ?

- has always been enough, BUT:
o Windows users name can be 20 characters

FEC address structure:
a FEC manages 1 or more EQM

an EQM is the internal representation of a device
server

<% thesze macro re—definitions of the IPX addres=s field=s will make section= of the code sa=zier to read =
#define HHFhwnd IPXImmediateiddres=s

#define FIPE=ck IPXHetworl

#define FIPEerr IPXHod=[0]

I

*

~internal
~brief structure which contains the FEC address information

The TINE librarv us=es= thiz structure for internal caches.
Sent to and received from the EHS

~note struct iz passed over the net (64 bytes)

LB B A]

*®.
typedef struct

char fecHamnse[FEC_HAME SIFE]; %% FEC nams #-

BYTE IF¥Hetworl[4]: <#%{ JPH addr info {(or internal) =~

BYTE IFXHode[6]: ~*®%{ TPE addr info {(or internal) =7

BYTE TFPiImmediatehiddre==s(6]; ~#*%{ IPE addr info {(or internal) *7

char IF[ADDRE_SIZE]: ~#%{ JF address a=z string %7

char IPh_addr[4]: %%, TP haddr (bvte representaticn) *7

SINT3Z2 portOffset; ~#%; port offzet (applied to all listening ports) %7
SINT32 inetProtocol: ~%®%{ inet protocol (ODE, TCE, IPX, MHEF, FPIFE., =tc.) *7
SINT32 tineProtocol; <%®%{ tine protocol lewvel (highest level accepted) #7

} FechataStruct:
#define FECDATASTRUCT SIZE (FEC_HAME SIZE+16+16+4+3%4)

EQM address structure
principal addressable information:

SR

* “~internal

* “bhrief structure which i= uzed to map a EgnContext-ExportHame to a FecHane-EgmHame.
*

The client uses EgnContext and Export name to address the FEC.
TINE internally u=e=z the FecHams and the Equipment name.

*

The TINE librarv use=s this structure for internal caches.

#®# Sent to and received from the EHS

*

* “~note =truct 1= passed owver the net (104 bytes)

*

* .
typedef struct
1

char FecHame[FEC_HNAME SIZE]: %% FREC Name =~
char SubSys=tem[SUBSYSTEM _NAME SIFE]; <#%¢ =zub-=v=tem nams *7
char EzportHame[EXPORT HAME SIZE]; <#%{ Bmport Hame -
char EgmnHane[EQM_NAME SIZE]: <%®%{ BEquipment nans *
char EgmContext[CONTEET _NAME SIFE]: . #=%¢ EgnContext *-

} ExpDataStruct:

typedef struct % ney =7

additional FEC information: - ostrec os s1ze3.

char de=sc[FEC_DESC_SIZE]:

(not important for client- o oo R voealon size)
. . char hdw[FEC_HDW SIZE];
server communication) char resp[FEC_RESP_SIZE].

} FecInfoStruct:

Relevant string lengths in these structures
FEC_NAME_SIZE: 16 bytes
- parallels USERNAME_SIZE

ADDR_SIZE: 16 bytes

- semi-redundant if IP addr as byte representation
also present

SUBSYSTEM_NAME_SIZE: 16 bytes

CONTEXT_NAME_SIZE: 32 bytes
- n.b. does NOT appear in protocol headers!

EXPORT_NAME_SIZE: 32 bytes
- n.b. does NOT appear in protocol headers!

IPv4:

4 bytes

string representation: e.g. "131.169.151.47" (16 chars)
IPv6.

16 bytes

string representation: e.g.
%2001:0db8:85a3:0000:0000:8a2e:0370:7334" (40 chars)

64-bit network prefix + 64-bit interface id
IPv4 to IPv6 mapping
hybrid dual-stack (hybrid sockets)
80 ‘0’ bits + 16 ‘1’ bits + remaining 32 IPv4 bits
*0000:0000:0000:0000:0000:ffff:83a9:972f" OR
Vi ffff:8329:972f” OR
V. ffff: 131.169.151.47"
Tunneling
IPv4 only hosts communicating with IPv6 only hosts

<% definitions for future release: *-

Proposed FEC = -

EYTE IpzHet[4]:

BYTE IpzNode[6]:
a ress EYTE IpzlmmAdr[&6]:
¥ IpzAdr:
tvpedef union

structure: ol paen
: BYTE ipvd[4]:
ipvd[4]:
no real IPX iz
def i
Su pport E?Ei ?Drgglgfhgte =ize *®7
HWHD wndMmf ;
SOCKET =sckFipe:

inetProtocol: & reoe=iten

SR

- UDP, TCP e
/4 J """ # ~brief structure which contains the FEC address information
*
° UCPV6 #® The TINE librarv uses thi= structure for internal caches.
Vi *
“note struct 1= passed over the net (96 bytes)
*

TCPv6, ...

*
typedef =truct

96 byt :
y eS (Was char fecHame[FEC_HAME SIZE]: ~#*%¢ FEC nams *-

FecHetidr netidr: ~<#%¢ network addr info *-

64 ytes FeclclAdr lclAdr: <%%: local addr info (pipse, mmf) -
char stridr[40]; %% addr info az string =
SIHT32 portlff=set; <%®%: port offzet =7
SIHT3Z2 inetProtocol; <¥®%{ 1inet protocol typs ®7
SINT3Z tineProtocol: <%®%: tine protocol level =7
SINT3Z2 reserved; S¥%{ reserved integer ®7

} FecAddrStruct
#define FECADDRSTRUOCT SIZE (FEC_HAME STIZE+164+8+40+44%4) % 96 bytes *-

Considerations:

how much hybrid support ?

- a server listens on IPv6 OR IPv4 sockets but not
both, etc.

- use ‘hybrid sockets’ ?
this will also affect the ipnets access lists
how best to be IPv6 ready ?

Currently:

C-Lib and Java Lib transfer ascii 1-byte chars over
the net.

Java Lib API uses char strings.

C-Lib API uses ascii char strings.

- BUT VB 6, .NET, MatLab, etc. wrappers use unicode.

most applications are unaware that they are NOT
using unless they try to pass e.g. Japanese
characters.

switch to UTF-8 ?

Currently all strings are transferred as
ascii characters (1 char = 1 byte)

UTFS8:

represent all characters in

variable width encoding

backward compatible with ascii

no endianness or byte-order mark problems

Bits Last code point Byte 1 Byte 2 Bytel DByted DByted | Byteb

Ti
11
16
21
26
3

U+007F
U+0TFF
U+FFFF
U+1FFFFF
U+3FFFFFF
U+TFFFFFFF

0x000000¢ <—— |acsii 0 — 127: covers English

11 Dsooood | 1000000

11100oo| 10xeocood| 10eoooo:

encode/decode all string data as UTF-8 ?

also: exposed names such as Device Name,
Property Name, Context, etc.

file i/o: convert to locale settings?
transferred data

existing APIs remain unchanged.

Servers can steer inelegant client requests in the right direction.
BUT the ‘steering” information needs to be registered !
SetMinimumAllowedPollingInterval()

RegisterPropertyInformation(,,, access, array_type, ,,redirection)

- array_type = CA_CHANNEL
> enforce MCA acquisition

- access = CA_NETWORK
> enforce multicast access
> also blocks synchronous calls

- access = CA_STATIC
> block monitors
- access = CA_NOSYNC

> block synchronous polling
o automatic start of client side listener ?

- redirection '= NULL
> requests to this property go to another server

- data type = registered structure

> access of a structure field will return entire structure
RegisterMultiChannelGroupDevice()

o alternative to CA_CHANNEL for strict OO devices
RedirectDeviceName(,, redirection)

- redirection '= NULL
> requests to this device go to another server

Relevant ‘hand-shaking’ status codes:
caller should never see these !

FEC/Server steering:
* invalid_protocol
- invalid_interval
property steering:
-+ get_subscription_id
- property_is_mca
* reset_mca_property
 information_static
+ server_redirection
* @async_access_required
* mcast_access_required
+ has_structure_tag
deV|ce steering:
- data_not_local
-+ server_redirection

< establish communication protocol
< establish polling interval

< listen for multicasts

< provide index to MCA

< when MCA elements change
< stops polling of static data

< redirect request

< block synchronous acquisition
< require multicast access

< field has underlying structure

< wildcard device is not local
< redirect request

What are we trying to avoid?
sending same data set to a long list of clients !
- CA_NETWORK
inefficient/counter productive polling intervals
- property is being scheduled at a high rate
- set minimum polling interval
single element acquisition of a known multi-channel array
- CA_CHANNEL
single field acquisition of a known structure
polling/monitoring static information

- CA_STATIC
- e.g. the units are "Amperes” and they aren’t going to change!

synchronous polling of something that should be monitored
- CA_NOSYNC

anything else ?

error codes/status codes < 512 are deemed
‘systematic’

not all ‘errors’ or ‘exceptions’ !

some are ancient (date back to the Isolde days)

- need the ‘tdc_’ prefix ?

some are for handshaking

- n.b. error codes from a dispatch routine run thru a
validator !

some are informational

- CE_SENDDATA
° e.g. has_query_function

some indicate ‘/ink’ or network errors
some indicate ‘call’ errors

do we need more structure in this?
prune unnecessary codes ?
any obvious missing codes ?

Supported data types
All the ‘primitives’
- CF_BYTE 1 byte
> byte (some 32-bit C, VB6, java, .NET); also Int8 (.NET)
> Unsigned byte (.NET); also UInt8 (.NET)
- CF_CHAR (CF_TEXT) 1 byte
> char (C without #define UNICODE, .NET with ansi encoding)
> byte (java, VB6)
- CF_INT16 (CF_SHORT) 2 bytes
> int (VB6, 16-bit C)
> short (not MatLab); also Int16 (.NET)
> unsighed short (not java, VB6, MatLab); also UInt16 (.NET)
+ CF_INT32 (CF_LONG) 4 bytes
> long (VB6, non 64-bit C, MatLab)
> int (32-bit, 64-bit C, java, Labview); also Int32 (.NET)
° unsigned int, long (32-bit, 64-bit C, Labview); also UInt32 (.NET)
- CF_INT64 (CF_DLONG) 8 bytes
> long long (UNIX 32-bit C)
o _int64 (WINDOWS 32-bit C)
> long (64-bit C, java, .NET); also Int64 (.NET)
° unsigned long (64-bit C, .NET); also UInt64 (.NET)
- CF_FLOAT 4 bytes
> float (C, java, .NET)
> single (VB6, LabView)
- CF_DOUBLE 8 bytes
> double (everybody!)

Primitives
do we need explicit ‘unsigned’ definitions?
- it’s ‘only’” a matter of interpretation at the end

points, BUT you have to know a priori how to
interpret!

or: just ‘do a java' and claim everything is
signed
- and leave the developer to his tricks...

note: 'STRING' is NOT a primitive |

String types
CF_CHAR (CF_TEXT)
- (an array of) 1-byte characters
- i.e. a string
CF_NAMES8, CF_NAME16, CF_NAME32, ...CF_NAME64
- (an array of) fixed-length (i.e. fixed capacity) strings
- very good for querying lists
- very efficient to traverse
CF_STRING
- (an array of) mutable strings
- in C this corresponds to an array of pointers !
CF_KEYVALUE
* (from the doocs world)
- parallels CF_STRING
- (an array of) mutable strings of the form “key: value”
CF_XML
- (from the doocs world)
- parallels CF_TEXT

Compound Data Types
doublets
- e.g. CF_LTINT, CF_DBLDBL, CF_INTINT, CF_NAME32I, etc.
triplets
- e.g. CF_FLTFLTINT, CF_NAME64DBLDBL, etc.
quads
- e.g. CF_ADDRESS, CF_FILTER, etc.
special
- e.g. CF_SPECTRUM, CF_IMAGE, etc.

- Header + designated Ien%th of some other type (each element in an array of
these has the same length)

adjustable length
- e.g. CF_ASPECTRUM, CF_AIMAGE, etc.

- Header + adjustable length of some other type (each element in an array of
these can have a different length)

systematic
- e.g. CF_HISTORY
(almost) complete overlap with DOOCS data types

remove deprecated types !
- e.g. CF_DBLINT only ever made sense on MSDOS

tagged structures
can contain any other data type
- except CF_HISTORY
- can also contain ‘adjustable’ types
can be nested
best practice: use primitives and don’t nest too deeply

- .NET:

o has structures

o if structure is ‘blitable’ (all primitives) then the block of memory is easily
accessible and handled more efficiently.

- MatLab:
> Essentially composed of (arrays of) char, long, and double

(first order) fields can be read (but not written) independently
- BUT entire structure is always delivered.

- do we need to read nested fields independently ?

‘tag’ and ‘field” names are limited to 16 characters

- is this a problem ?

- note: accessing a field => request <property>.<field>

- restrict <property> length to 64 - 16 characters if data type =
CF_STRUCT ?

Bitfields
Applies only to ‘integer’ types
- CF_BITFIELDS8, CF_BITFIELD16, CF_BITFIELD32, ...
can be used to enumerate bits
can also give names to ‘fields’ of bits
can read any field independently

WRITE commands pass the data sent to the
dispatch handler as is.

How to WRITE bits (bit fields) independently?

- Somehow pass the ‘field’ or field mask to the dispatch?

Note: the .BIT.x meta-properties have some
overlap here.

Tweaking Performance
Quality of Service
- UDP, TCP, STREAM, PIPEs and MMFs
threads
- priorities
default settings
LAZY vs. EAGER scheduling
- flow control parameters for UDP
- thread priorities and synchronization
- deadbands, timeouts
- lingering canceled contracts

- default table lengths
e client, contract, connection tables ...
° resources_exhausted ?
> use ArraylLists in java after all ?

bottlenecks ?

- egm dispatch is synchronized
> but can run on separate thread if needed (other calls would get ‘operation_busy’ rather
than a ‘link_timeout’).
° can also return ‘not_ready’
> Can optionally synchronize with the background dispatch.

Other issues?

Redirection:

from any /context/server/device[property] to any other
/context/server/device[property].
- requires ‘status string’ to be up to 192 bytes.
* no ‘long’ device name allowed here!

Group Equipment Name Server (GENS)
redirects the device entries in its database to the appropriate
target server.
needs device ‘metric’ if the device order is important
Can apply device name pre- and post-fixes to avoid device name
collisions if necessary.

Archive System
central archive redirects back to device server for ‘local’ history
information
device server redirects to central archive of *.ARCH’ meta-
properties

redirection issues ?

hot swapping devices

use

- RegisterDeviceName(), AssignNumDevices(),
SetSizeDeviceCapacity()

- should call ResetMultiChannelProperty() if hot
swapping a device within an MCA

any issues ?
adding/editing settings on-the-fly
local histories
alarm watches
units, max/min settings
- additions/edits are currently ‘volatile’.

- save the changes ?
> there’s not always a config file!

Software failover of device server
2 servers with identical functionality

- e.g. /PETRA/Idc.OR08 and /PETRA/Idc.OR19

- one is declared master

> Registers itself a 2" time with a ‘common’ name
° e.g. as /PETRA/Idc

- one is declared slave
> monitors the master

failure of master: triggers the slave to register as master
return of real master: should resume its role!

running client will experience a down time on the order
of minutes.

‘best source’ scheme (vs. load balancing scheme).
Should this be configurable?
- e.g. best source or load balancing

Configuration options

Clients need to resolve addresses !

- without ENS (Equipment Name Server)

° run in stand-alone mode (TINE_STANDALONE=TRUE)
use the ‘dynamic’ cache

explicit instruction NOT to use the ENS
° use a ‘local’ database repository
TINE_HOME points to it

- with ENS(es)
° need to ‘find’ the ENS(es)

TINE_HOME -> cshosts.csv (contains known address)
TINE_ENS specifies it
DNS + ‘tineens’

multicast: ‘ENS where are you?’
assign via API

- any other ideas ?

Configuration options

servers can register all info via API

and some do !
all doocs servers
epics2tine
tango2tine
etc.

else
FEC_HOME points to FEC database repository
can use xml as database (fec.xml) or .csv files.
can also use API registration as well.
but
save-and-restore only uses .csv files
and uses the FEC_HOME repository

any issues ?

csv File configuration
FEC_HOME points to repository
fecid.csv found there : FEC name and port
- issues with fecid.csv ?

each registered equipment module (EQM) has a
subdirectory given by its process-‘local” EQM name (6
characters)

- e.g. ./BLMEQM

« exports.csv : export (server) name, property info
- devices.csv : device names + info

* users.csv : allowed users (and groups)

* history.csv : local history info

- alarms.csv, almwatch.csv : alarm system info

- ipnets.csv : allowed net addresses

- + <property>-users.csv, <device>-users.csv, etc.

- + save-and-restore files

backward compatibility:

- also see if these files exist directly under FEC_HOME area !

exports.csv
spreadsheet like
- focus on: exported property information
- => no hierarchy !

- some column-repeated information:
° context, export name, number devices, etc.

* max, min, units now parsed from description
> Provide extra optional columns ?
MAX, MIN, UNITS, XMAX, XMIN, XUNITS ?

fec.xml
Is hierarchical
same tags as .csv columns
all info in 1 large file
- a bit more cumbersome to auto-update

- no possibility of e.g. inserting a history.csv file ‘under’ a
server.

dynamic cache location ?
use an environment variable ?
current defaults:

Win32: %SystemDrive%:\tine\cache

unix: /var/tmp/tine/cache
but this is cleared on reboot of host
check for /var/tine/cache (with o:rw)?

hooks to additional resources ?

currently: hook for external fd (sockets) sets

Others ?
e.g. a hook for a real-time delay : rtdelay() ?

Java Instant Client

File ©Options Data Transfer Monitor Options Debug Options

Device Context Device Subswstem

Help

E| AL

|PETRA

El Show Stock Propriies [

Device Server Device Mame

BPM | [EPM_swR_13

E| o

Device Property

Orbit. %

Data Size Daka Type
g2z | |FLoat

El Sh % position

Orbit. i

PM_DATA_G)
PIM_DATA_SUM
PM_DATA_
PM_DATA_Y
PIM_EYENT_FLAG
PIM_EVENT_TIME

|

[] Autoscale

[JLog Scale

History
Suggest Decaorations
Suggest Draw Mode

[1nput Pane

Settings: UDP, Timer | Suppress Query Properties

operties and Devices

Properties
are methods !
provide the essential point of contact to the
equipment module dispatch handler
* no property -> no dispatch !
can have access control lists
have meta information
- canonical data size and type
- units
- max and min settings
- etc.

Properties

SEE typedef struct PrpEguStruct
*® ~internal

* “hrief Structure used to hold exported property information. char unit=[16];

* float min;

typedef struct ExportPropertylist float max:

BYTE graph:
char prpName[PROPERTY_NAME STZE] - #%: property namns *7 BYTE reserved[3]:
char prpilias[FPREOPERTY_HAME SIZE]; ##: property aliaz nams % 1 PrpEgu:
SINT3Z2 prpld; ~%%: property id =~ ’
TIHT32 prpSize; SE¥L mAaxEimum supported arra ize *®7
TIHT32 prpSizeln; S%%L marEimum supported inpdt array size ®7
short prpFormat <#%: format output data £
short prpFormatlIn; <#%s format input datz” *-
short prpiAccessHode:; <#%g bit [: read agpfes=. bit 1: write access #*

v tyvpe if array *-

array *-

if array =

data =tructure tag if non zZeroc—length =

t data structure tag if non zero-length =7

e—director if not HULL -

device list if not HULL %~

nunber of dewvices in device list =7

property specific acls *

; ~#%¢ flag == PRP KEREAD HONE, _TLOCK, _ATLL #*-

Tead; ~#%¢ flag == TRUE —-: egm call in separate thread =7

on[FROFPERTY_DESC _SIZE]: <##¢ short description of property 7
<#%: url to additional information {(if not HULL) =~

short prpArravivpe:; S¥¥L property ar
zhort numBows: SREL NUN TOWS 2
short rowSize: SE®L TOW =1
HAHMElG prpFormatTag: <#%g outp
HAHMElGe prpFormatTagln: SEEL]
FrpFedirBlk #*prd; SRR
HAMEG 4 #*devHames:
int numDevices:
AclInfoType acllst;
int ha=Ezclu=ziveRea
int runInSEparatE
char prpDescrip
char *prplrl;

FrpEgu egu; <#%s BEGT information for display =7

FrpEgu =egu: <#% g—axlz EGU information for spectrum display *7

BEYTE #prpBuf ; <##%¢ deeply bound data buffer if not HULL =~

EYTE #*#=rBuf : %% zavesrestore data buffer if not HULL =~

TINT32 =rBufSiz: S#%{ zmavesrestore data buifer size #*-7

FREPSIG =igfon; S¥%{ property =ignal function 1f registered =7

int =igmask; <#%: gzzigned s=ignal mask to use in a =ignal function %
woid *=igref <#%: gzzigned reference to use in a signal function 7
time_t mcaValidFloor: <#%L minimum client startime where mca indexing i= valid*s

ztruct ExportPropertvlist *next;
} ExportPropertvlistStruct:

Questions:
Do we want to distinguish between

max and min ‘display’ settings
and
max and min ‘set point’ settings ?

Should there be an (optional) ‘automatic’
out_of range check if attempt to WRITE a

value past the set points ?

Any other missing meta-attributes ?

meta properties
property name + up to 4 char meta extension
- e.g.
o LossRates.HIST (history of property “LossRates”)
° Charge.EGU (engineering units of “Charge”)
° Orbit.X.NAM (associated channel names for “Orbit.X")

° Trace.XMIN (x-axis min value for “Trace”)
° etc.

gated meta properties
- e.g.
o Status.BIT.3 (bit 3 of ‘integer’ property “Status”)
o Register.MASK.0Ox7 (value of “"Register” masked by 0x07)
o Status.Gate.Oxae (binary output of “"Status” gated against Oxae)
- Coming soon:

° Pressure.DMASK.3 (MCA returns those devices whose device mask is
‘3’ = doocs SYS_MASK)

o Pressure.DMASK.3.NAM (MCA device names whose device mask is 3)
> Possible enumerations for the '3’ ?
+ e.g. Pressure.DMASK.turbo

Multi-Channel Array (MCA) properties
Required behavior

- must supply an array of equal length and corresponding to either
> 1) the registered device list

° 2) an assignhed device list
see AssignDevicelistToProperty()

° 3) another registered property of the same name but with the meta-
extension “.NAM”.
* note: using either 2) or 3) above automatically flags the server
as having prc()jperty query Precedence’ (i.e. a ‘property server’
instead of a ‘device server’).

- must accept the contract’s ‘DeviceName’ as the startin(? point in
the MCA and return the number of elements requested.

° often 1 element OR all elements starting at the beginning.
> the dispatch can wrap past the end or truncate the call as desired.

can also make use of RegisterMultiChannelGroupDevice() if
there is a hard device query precedence!

Devices

may or may not refer to hardware devices
can have:
- property lists
> which of the registered properties are supported by this
device ?
> flags the server as having device query precedence.
- access control lists
- description
- location
- Alarm lists
- mask (doocs SYS MASK)
- Z (longitudinal) position

Any open issues?
wildcard support ?

both DeviceName and PropertyName support
wildcard calls.

TINE security based on
user name
- those 16 bytes in the PktHdr
- to do: use API instead of USERNAME env.

- done in 4.2.3: allow groups
° e.g. server can allow all members of ‘mhfe_user’

network address
- from the ethernet packet
- single address or range

3 Levels (cumulative)
server
property
Device
Access Locks
Only the client with the token is allowed access
Exclusive Read
A property can register XREAD in its access parameter
XREAD and READ together require an Access lock to be in effect.

Assigning the ACL information

via API
- e.g. AssignDeviceAccessList()

via database configuration file

- fec.xml (not yet!)
o => Stock properties to ADD/REMOVE ACL items update
the .csv files!
- e.g. ‘users.csv’, <deviceName>-ipnets.csy, etc.
> Trying to minimize ‘scanning for files’ at startup by first
checking directory for **-ipnets.csv’, ‘*-users.csv’

other/better solutions?

Tk ,,....-r'\ll

OCS compatibility

Issues
most pure acquisition features are mapped !
- data type mapping is 99%
> exotic history data types (in progress)
o TINE struct and bitfield not supported in doocs
how much of a problem is that ?
fuII function mapping still an issue

?(calling P.HIST on a doocs server over a time range,
asking for a single int32 value will fail
o TINE returns the number of points in the interval

- many such ‘gotcha’s, but mostly at this (2" tier) level
security (a persistent bother)

- doocs server must supply the gid/uid of the ‘resolved’
user seen in the TINE PktHdr.

> A FEC middle layer will supply the FEC name (definitely not
resolvable).

o Solution: FEC call to a doocs server can set the doocs user to the
logged in user (who is hopefully resolvable).

Issues (continued)

‘hidden’ stock properties in TINE
- very easy to ‘unhide’ at the browser (e.g. rpc_test): just show them.
‘hidden’ meta-properties in TINE

- A bit trickier to ‘unhide’ only the ‘relevant’ ones
° acquire full property query information
> e.qg. if ‘prpHistoryDepthShort’ > 0 then show <property>.HIST in the browser.
° e.g. if max or min != 0 or units !'="" then show <property>.EGU in the browser.
o etc.

some doocs ‘favorites’ could be added to the meta-property soup:
- .SYS_MASK will appear in 4.2.3

- what else ?

property servers

- browse differently !

- trap the ‘has_query_function’ status with a call to DEVICES

- Fill in ‘locations’ with the results of <property>.NAM at each change of
property.

Issues (continued)

configuration
- server administrator must remember to set the SVR.GROUP if server is a

member of a group
. group server BLM consists of 3 servers BLM.1, BLM.2, BLM.3 running on

dig’erent osts.
- should take time to set SVR.TINEFEC
° provide a ‘sensible’ FEC name (e.g. "PEVACFEC") to avoid the automatic nhame of
e.g. “1o83a997ab.1f8"
- make use of SVR.TINEPREF and/or SVR.TINESUFF to decorate a device
server name to avoid collisions or ambiguity
q SVR.TINEPREF “LASER.” would register a server "LASER.ADCSCOPE” instead
f "ADCSCOPE"
subsystem decorated contexts
PETRA.VAC without subsystem leads to context "PETRA"” and the server
belongs to subsystem “VAC".
- address resolution does not care:
° e.g. /PETRA.VAC/IonPump and /PETRA/IonPump both resolve to same server
: cou!jd) lead to name collisions in TINE (unless e.g. SVR.TINEPREFF was
use
- supply a subsystem => the decoration will not be removed
o ft__)utlttl'len we end up with a slough of contexts which nominally belong to the same
acility

Issues (continued)
nice to have:

* recognize and register MCA properties.

- Fill in the 'system stamp’ and/or ‘user stamp’ with
e.g. pulse number

5
=l
o B
<
d
=
("]
h
=
—
O
e
e

Supported Platforms
Any reason to continue supporting DOS,
Winl6?
- if release 3.xx is still supported, they will work
VMS may or may not still work

Anything else needed?
- RTEMS ?

- android ?

Embedded issues ?

- is there a disk ?

Language support
C, C++, C# (and .NET), Java
- native libraries: C and Java
- everything else interops with the C library

- C-Lib can be single threaded (tine.dll, libtine.so) or multi-threaded (tinemt.dll,
libtinemt.so)

Delphi (Lazarus)

- based on C Lib

- visual pascal

LabView

- based on C Lib

MatLab

- official ‘mex’ routines based on C Lib
- could also use the java Lib
- octave ?

- experiences ?

Python

- PyQt, IPython ?

Perl ?

Functional languages?

- Scala, F#

API primarily based on the idea of

a Contract
- the requested action/information from the target

aLink

- connects the results of the action to the process
data

- specifies a transport mode
o SINGLE (asynchronous or synchronous)
c TIMER (POLL)
> DATACHANGE (REFRESH)
o EVENT
> RECEIVE

APIs

C and Java APIs are well known
- cardinal rule: don’t break the API!

- C API is NOT object oriented
o suffers a bit from lack of ‘overloading’
extended routines:
e.g. RegisterDeviceEx(), AttachLinkEx2()

- Java IS and makes use of a Link Object with data
acquisition methods !

- both: data is always passed by reference
o => jn Java a scalar is an array of 1 (MatLab does this too!)

- what is missing, wrong, useless ?

‘Official’ C++ API ?
- (currently there are several)

APIs (continued)

C# and .NET interop with the C Lib but model the API on
Java.

- except: everything (even primitives) really is an object
and you can pass by reference !

- structures are easiest in .NET

note: with the ‘interop’ there must be a platform specific
library ‘tinemt.dll” or ‘libtinemt.so’ on the path !

- then can compile with ‘anyCPU’
ACOP
- graphics API designed for control

- originally a common transport API
o> ACOP ActiveX support(ed)
TINE, CA, MKI, CDI, ISOLDE, ConSys, etc.
o acopbeans supports only TINE (and simulation)
but with a bit of refactoring ?
Interest at KEK to get/set STARS via acopbeans.
o ACOP.NET is in prototype

tforms and APIs

Web Tools
Web2C ?
PhP ?
.NET, silverlight ?
browser plugin ?
instead of
tine://context/server/device/property

http://something.desy.de/

Command Line tools
frequently used in scripts

can become problematic:

- each tget needs to resolve an address
o contacts the ENS to get the address
> makes the synchronous call to get the data it wants
> then exits and forgets everything

a forgotten solution:

. ?1 local repeater runs in the background on the local
ost
- ‘tget’ first checks for a repeater
o exists:
get data from repeater

repeater caches the target address and maintains a static
listener

> doesn’t exist:
do it the brute force way

Some have direct relevance to TINE Lib

e.g. a starting server clears its alarms

- if the call to "/ <myContext>/CAS/RemoveAlarms” is
successful -> Yes, the CAS is monitoring me !

TINE time synchronization expects
Y/SITE/TIMESRV” to exist

- if not: no TINE time synchronization

if ¥/<myContext>/Cycler” exists apply the incoming
cycle number global to my ‘system stamp’.

redirect any “<property>.ARCH" call to
“/<myContext>/HISTORY"

etc.

Any issues with :
naming (ENS/GENS) ?
archive system (ARCHIVER/HISTORY) ?
post mortem/event (EVENTS) system ?
globals system (GLOBALS) ?
alarm (CAS/ALMSTATE) system ?
state system (STATE) ?
statistics system (FECSTATS) ?
central logging system (CLOG) ?
spy system (CSSPY) ?
viewing tools, GUIs ?
specific APIs
how do I get this/that from the
- ENS ?
- CAS ?
- etc.

Standard semi-off the shelf servers
motor server
scope server
video server
any other ‘off the shelf' servers ?
scan server ?
sequencer
FSM ?
USC (universal slow control)

tine repeater

Client-side C library with codecs and other
tools?

Any other issues?

watchdogs
win32: wdog
Linux : autoproc
what should they be able to do?
remote restart daemons
wdog, autoproc can do this
VxWorks restart task

application managers ?

[DESY 2fTrigoerModule_D2 Activity

~ Input Commatd

Ihalp

Help | clients connections stats modules

time:

o] e |

| wergion | security |

!

Scieen Buffer Size
1000

|7 fines

Debug Level
coe1e2 3 4

target ! <ENME0OL: A#0[SRVSTARTTIME] network read only access
inpUt @ 0 NULL walue(s)

output : 32 TEXT walue(s)

contract id 8

number of clients @ 1 [(1ist size 1)

Tast completion code @ 0 (SUCCESS)

last link status @ 129 (not signalled)

number clients pending deliwery @ 0

contract expired @ false

clients: HEREB ((131.1£%9,150.72) @ 500 msec

target @ <EME0OL1x #0[walue]read only access

inpUt @0 NULL walue(s)

output : 3 FLOAT walue(s)

contract id : 2

number of clients : 1 (1ist size 1)

Tast completion code @ 0 (SUCCESS)

Tast 1ink status @ 129 (not signalled)

number clients pending deliwery @ 0

contract expired : false

clients: D2MARCH (131.169.119.73) @ 1000 msec

target : <TRIOOL1»/Kickerz_FInj[errorbDescription]read only access
input @ 0 NULL walue(s)

output @ 5 MAMES4I walue(s)

contract id : 4

number of clients : 1 (15t size 1)

last completion code @ 0 (S5UCCEss)

Tast 1ink status : 1292 (not signalled)

number clients pending deliwery @ 0

contract expired : false

clients: DESYCOM ([121.169.121.84) & 1000 msec

{inside scheduler @ falsel

]

ghostics and logging

tracing problems ...
general setup (“nothing works”) problems

. TINE setup checker (in progress)
> dump relevant environment variables

> check connectivity to ENS

> check manifest

> check firewall settings

etc.
Log files
location given by FEC_LOG
C-Lib:

> fec.log (1 rotation into fec.bak)

o LF-CR as per OS

> format suggestions ?

<time> [fec name] (log entry)
time zone in <time> constrained to 3 char => standard length

- Java:

> Uses java.util.logging.FileHandler

° LF only

> fec.log.0 (rotates into fec.log.x)

° time zone as per JVM locale (e.g. "CET” and “"CEST"”) => non-standard length
- all WRITE commands logged by default

- comments/ suggestions ?

tracing problems ...

attachfec

normally uses a local PIPE into the FEC process
use the FEC name as the PIPE name

allows remote access to FEC

can also attach to a local client process
use the pid as the PIPE name

comments/suggestions ?

CDI

active as well as passive CDI servers ?

a CDI is a ‘property server’
need a ‘device server view'?

any issues ?

TICOM

any issues ?

basic web site (
straight-up doxygen generated
other look and feel ?
organizational issues ?
tutorials ?
application videos ?

mantis (
phpbb (
wiki ?

http://tine.desy.de/
http://tine.desy.de/
http://tinetracker.desy.de/
http://tinetracker.desy.de/
http://tineforum.desy.de/

.zip and .tar files
.deb, .rpm, .msi ?
'setup’ scripts ?
SVN accessibility ?

tative Conclusions

HeaderSize
pid
Endianness
Character encoding flag ? (probably not
necessary)
Application ‘string” (maybe 64 bytes)
a short ‘tag’:
A middle layer : “FEC”
A ‘wrapped’ application: e.g. “"MatLab”, “"Python”,
“"Web2C”, “LabView”, etc.
+ Process name
Reserved fields (not necessary if HeaderSize is in

header)

Also needs a PktHdr: We forgot about
this!

Those initial 2 bytes (totalSizeInBytes as
UINT16) should become a response
header with:

totalSizeInBytes

HeaderSize

endianness

FEC name

sizeInBytes, sizelnElements on request and response
settable mtu on request side

unsigned integer format definitions
CF_UINTS8, CF_UINT16, CF_UINT32, etc.

display AND setpoint max/min settings ?
NO: one set of max, min
Can be used for setpoints via call to AssertRangeValid() if developer wants

return code
categorize which return codes an EQM is allowed to use
structures
status, return code, return source at server, etc.
=> don't break current API !
Java: optional unchecked exceptions ?
If 'some boolean flag’ = true then e.g. throw tineloException() ?

Is ‘best source’ !

Could do load-balancing this way:

Instead of "master/slave” use
“primary/secondary”

primary monitors secondary's NCLIENTS

primary needs to redirect to secondary if
my NCLIENTS >> his NCLIENTS

API to GetMyPortOffset(FECNAME)

Check local manifest
Found FECNAME -> return assigned port
Not found -> return ‘next free port’

Could also check with the ENS ?

Note the /var/tmp area on Unix is not a good spot
for the manifest.

Try env variable

Then try /var/tine/cache directly

Then resort to /var/tmp/tine/cache

Or service daemon ?

Stock property to return useable Meta-
Properties
“METAPROPERTIES” ?
“FILLEDMETAPROPERTIES” ?

Also use in Instant Client
(show available meta properties check box)

EZTINE
Based on ‘buffered API’ ?
Small < 2 pizza) committee to agree on a reduced set of
simple API calls (+ tutorial)
C++
Small (< 2 pizza) committee to agree on a C++ API

Special aside: use UNASSIGNED_CALLBACK as callbacklId in
AttachLinkEx() or AttachLinkEx2() to receive the link Id.

Java
Remove *final’ from TLink object, etc.
New API calls that throw checked exceptions ?
(Ahhh, now that’s java!)
vs. optional unchecked exceptions ?
(violates ‘official’ java style)

MatLab API
Java or C++ ?

Command line tools (especially tget):
Make use of (old) local tineRepeater daemon

