
TINE RELEASE 4.1: RESPONDING TO THE USER'S NEEDS

Philip Duval, Piotr Karol Bartkiewicz, Steve Herb, Mark Lomperski, DESY, Hamburg

Stefan Weisse, DESY, Zeuthen.

Abstract
In the period between the shutdown of the HERA collider

and the commissioning of the PETRA 3 synchrotron light

source the TINE [1] control system was upgraded and

modernized to the next major release level, namely 4.0.

Many of the new features and capabilities have been

reported before [2]. As can be expected, when what was

'designed and planned' is actually put to use, various

imperfections and deficiencies begin to surface, the

natural 'enemy' of the developer being the 'user'. To this

end there has been a slow and iterative progression

toward TINE Release 4.1 which will be reported on here.

Many of the embellishments involve improving data

transfer efficiency (such as enforcing the use of multi-

channel arrays even when the user makes single channel

calls) or meeting the user's expectations of what should be

possible (such as allowing variable-length TINE data

types to appear within TINE data structures). In addition,

TINE Central services have been more systematically

integrated into the protocol.

INTRODUCTION

Originally a spin-off of the ISOLDE control system [3],

TINE is now a mature control system. A great del of

developmental effort has gone into the control system

protocol, resulting in a multi-faceted and flexible API

with many alternatives for solving data flow problems.

As the standard TINE kernel is written in straight C and

based on Berkeley sockets, it has been ported to most

commonly used operating systems. Additionally, a native

java port of TINE is being used extensively in the control

systems of PETRA3 and its pre-accelerator chain and has

been integrated into jDDD [4] and Control System Studio

[5]. Likewise, interfaces to LabView and MatLab have a

veritable „army‟ of users. Recently, Python bindings

(PyTINE) and a .NET interface have also been made

available.

Throughout the commissioning phase of the PETRA3

pre-accelerator chain and the first several months of

PETRA3 operations, the TINE release level in use has

been in the 4.0.x area. TINE Release 4 itself marks a

major upgrade in the TINE protocol and has been

described elsewhere [2]. It is not surprising that „design

flaws‟ and „missing features‟ were made evident during

this commissioning period, causing a natural evolution to

take place. At the same time, as hardware and

infrastructure improve (e.g. 64bit operating systems and

Gigabit Ethernet are becoming standard), expectations of

the users concerning the abilities of the control system

also tend to rise. Furthermore, it is becoming common

practice to control a facility with a primary control system

but with interfaces to elements of other control systems.

The users are not concerned to any extent with how

difficult this might be but simply expect it all to work.

This systematic progression, following the normal

„give-and-take‟ interactions with operators and engineers

using the new control system tools and applications, has

now culminated in TINE Release 4.1 which we describe

below, with particular emphasis on satisfying the user‟s

needs.

THE USERS

The primary category of „users‟ consists of the control

system developers, who are making use of the control

system API to accomplish the control system tasks at

hand. The next major category consists of the hardware

engineers who are not only using the control system tools

to test and maintain their hardware but also placing

demands on design criteria. Then there are the machine

physicists who are commissioning the machine along with

the operators who are running the machine. In many

cases these categories overlap.

Developers

The control system developers are the most prone to

exposing weaknesses and deficiencies in the control

system API, their feature requests naturally leading to an

expansion of the API. On the other hand, resourceful

developers who find a way of “getting the job done

somehow” can promote systematic changes or new

mechanisms that appear beneath the API layer.

In the former category, TINE now supports for

example, property-specific access control lists and

property access signals simply because these things were

wished for by the developers. TINE Access Locks are

now easier to deal with and offer the ability to request

exclusive read access. Users can now register a so-called

cycle trigger function (a dispatch routine called when a

new cycle number is received).

In the latter category (responding to use cases), it was

seen that, although certain server properties are duly

registered as providing Multi-Channel Arrays (MCAs),

some application programs were written to monitor each

channel individually. Think of a vacuum server with 300

sputter pumps being interrupted 300 times per second to

return the readback value of each pump individually as

opposed to being interrupted once per second to return the

values of all pumps with a single atomic call. TINE now

enforces MCA access by introducing simple handshaking

that informs the caller which element of the entire MCA

is being addressed. This of course happens underneath

the API, so that the caller is unaware that this efficiency

improvement is taking place. Another example of

innovation beneath the API is the inclusion of lazy

scheduling versus eager scheduling, where property-

scheduling events from a server can either invoke the

property dispatch directly (eager) or simply mark the

property for scheduling at the next available opportunity

(lazy).

 Normal bug reports and fixes will not be discussed in

any detail here, but we mention that this category of users

is that most prone to stumble over unforeseen bugs and

use-cases.

Engineers

The hardware engineers are often the first to use the

semi-finished control applications; they have their own

expectations about what is needed to test their hardware

and are among the first to notice what doesn‟t „behave‟.

Most of the examples given below in the section Central

Services in fact come from the engineers using the central

services general applications tools.

We mention here that systematics were introduced in

TINE 4.1 which enable device servers to refer archive

calls to the appropriate channel in the central archive and

vice versa to allow the central archive to reference the

appropriate local history channels at the device server.

Machine Physicists and Operators

The machine physicists and operators not only expect

things to behave properly but demand accuracy in what is

being displayed.

If the alarm viewer is displaying an alarm, it must be

„real‟ and displayed at the proper severity. And, if there is

a real alarm it must be displayed on the alarm viewer!

Responding directly to requests from the operators has in

TINE 4.1 led to among other things, oscillation-window

learning (when is a new alarm a „new‟ alarm and when is

it just „flickering‟), the ability to place the same alarm in

multiple alarm systems, the ability for the operators to

suppress alarm categories completely, and so on.

Sometimes expectations based on „what should be

possible‟ also drive development. For instance, if the on-

line analysis of high-resolution video frames could in

principal be met with a gigabit Ethernet, then it is

expected that the control system should be able to achieve

this. Allowing for some overhead concerning contract

and connection management, TINE 4.1 has come a long

way toward meeting these expectations.

INTEROPERABILITY

In a control system environment using TINE and TINE

applications, it is important that any „foreign‟ elements

appear to the users as if they were also TINE elements.

This of course requires seamless interoperability with

these elements, which involves not only simple data

transfer, i.e. the transaction translation layer, but also the

mapping of alarm and archive information as well. In

some cases „name-mapping‟ is also expedient in helping

users locate items of interest. We discuss below recent

work concerning TINE Release 4.1 and its interface to

other popular control systems.

DOOCS

As TINE is completely embedded in DOOCS [6] and

both long- and short-term plans are to run DOOCS via the

TINE protocol, much effort has already been expended in

fixing and avoiding what one might term impedance

mismatches, formally assuring that the DOOCS

environment is the TINE environment and vice versa.

This includes making sure the name space and the format

space are synchronized, that browsing strategies always

work, that the alarm mappings are complete, and that

archive data acquisition works as expected. This has by

and large been achieved.

EPICS

An EPICS [7] view of TINE or a TINE view of EPICS

requires a fully functional mapping between the two

systems. This has mostly been accomplished via the

epics2tine translation layer [8], which can run embedded

on any EPICS IOC as well as on the TINE instantiation of

the javaIOC. Tantamount to having seamless operation is

understanding the difference between EPICS pvData and

device server property access. These are not identical and

reflect the differences between a database view of the

control system („get‟, „set‟, „monitor‟) and a device

instance view of the control system („property‟ calls). As

long as properties reflect attributes of device instances the

mapping is straightforward. Where properties represent

commands („RESET‟) or methods (calls with distinct

input data) the mapping becomes more complex. In

addition, one of the innovations of the javaIOC is to allow

structured data, which has been a feature of TINE for

some time. However the javaIOC requirement of

allowing mutable (i.e. non-fixed length) strings within

structures has resulted in the requirement that TINE 4.1

also supports variable length formats, such as strings,

image types, spectrum types, etc. (where the length of an

array of these „things‟ does not give number of bytes)

within structures.

TANGO

TANGO [9] has generally been seen to be a good fit to

the TINE API. Only a few interface routines were added

to TINE over the course of the year in order to simplify

the tine2tango [10] and tango2tine gateways. One

potential stumbling block remains. TANGO has no

official name length restrictions for its family, class,

member, and property names, whereas the equivalents in

TINE do (e.g. 64 characters for registered device and

property names). For practical purposes, there is only a

problem for the TANGO member which maps to the

TINE device. Even here, one seldom encounters such

long device names, unless the natural hierarchy is

artificially extended at this juncture (i.e.

/context/server/device/sub-device/sub-sub-device/etc)

This is not a problem for most practical purposes as the

TINE protocol allows device names to carry up to 1024

characters.

STARS/COACK

STARS [11] or COACK also maps to TINE in a

straightforward manner using a STARS 'bridge' [12].

STARS, however, has no restrictions to the name space

hierarchy. This leads to the solution alluded to above in

the discussion on TANGO, where the hierarchy is

extended via the device name. Practically, a hierarchical

device name comprising more than 1024 characters

should never be seen.

CENTRAL SERVICES

 The TINE central services have all experienced

extensive feedback over the past year, which has in many

cases led to improvements in the TINE kernel itself. We

describe below some of more important improvements to

central services to be found in TINE 4.1.

Archive System

The TINE archive system for instance, is extremely

responsive concerning „lookup‟ requests. Time-centric

lookups of multi-channel arrays cost on the order of 1

millisecond (including network), largely independent of

the size of the MCA (a few micro-seconds per channel).

Time-range lookups typically cost ~100 milliseconds for

1000 values (less than 1 millisecond per channel-lookup).

The TINE archive viewers are likewise tailored to fast,

on-line browsing of archive data, in that a maximum data

size on which to raster the stored data is used (zooming

on a time region forces a reacquisition of the archived

data). Nonetheless, browsing over a week‟s worth of data

distributed over only a few thousand points could jump

over important „glitches‟. To prevent missing these

glitches, TINE 4.1 now marks detected „jumps‟ as

interesting and ensures that archive calls will always

contain such points of interest. In the same vein, some

MCAs tend to be volatile with regard to the channel name

lists composing the names of the array elements. That is,

the list of comprised channels might be different today

than it was yesterday. Note that the channel names are

stored separately from the array data in order not to

impact heavily on the available disk storage. The TINE

4.1 archive server now allows these MCAs to be marked

as volatile, causing archive lookups to check and adjust

the name list configuration over the time range requested.

This will cost a bit more time concerning the lookup, but

will ensure that the data for a specific channel is

consistent over a time range even if the channel was

moved to a different array element during the selected

time range.

In analogy with the MCA viewer, general viewers for

scope traces and transient recorders have a set of

systematically implemented features which encompass a

wide variety of servers and allow easy analysis.

Alarm System

Hardware alarms (bus I/O errors) are often of particular

use to the hardware engineers, who have a set of

questions involving „how often?‟, „which hardware

modules?‟, „what kind of error?‟ etc. The TINE 4.1

Alarm Viewer offers the ability to generate alarm „reports‟

as an aid in answering these questions.

Naming System

TINE offers plug-and-play server configuration, where

server developers do not need to involve control system

administers to add new servers to the system. However,

removing a server once it has been declared „defunct‟ was

always a task left to the server developer or administrator

as an explicit request to the naming services. Popular

demand has now given rise in the TINE 4.1 Equipment

Name Server (ENS) to a „deadweight‟ checker as part of

the normal naming services. Non-responsive servers (no

response over a 90-day period) are now automatically

removed from ENS database.

CONCLUSIONS

We have given only a summary of some of the issues

which drive the evolution of a control system and in

particular have driven the progression of TINE 4.0.0 to

4.1.0. Many details have been omitted as has a discussion

of the co-evolution of the control system with operating

systems (“How does Microsoft‟s change in Winsock

behavior impact the control system?”). We note that

TINE 4.1 will continue to evolve into TINE 4.2 and

beyond.

REFERENCES

[1] http://tine.desy.de

[2] “TINE Release 4 in Operation,” P.Duval et al.,

PCaPAC 2008.

[3] “A PC Based Control System for the CERN ISOLDE

Separators”, R. Billnge et al, ICALEPCS ’91.

[4] “First Experiences with jddd for PETRA Vacuum

Controls”, E.Sombrowski, et al., PCaPAC 2008.

[5] “Control System Studio (CSS)”, Jan Hatje, et al.,

ICALEPCS 2007.

[6] http://doocs.desy.de.

[7] http://www.aps.anl.gov/epics

[8] “An EPICS to TINE Translator”, Z.Kakucs, et al.,

ICALEPCS 2001.

[9] http://www.tango-controls.org

[10] see ”EPICS to TANGO Translator”, R.Stefanic and

L.Geoffroy, ICALEPCS 2007.

[11] http://pfwww.kek.jp/stars/

[12] “The interconnection of TINE and STARS”, T.

Kosuge, PCaPAC 2006.

http://tine.desy.de/
http://doocs.desy.de/
http://www.aps.anl.gov/epics
http://www.tango-controls.org/
http://pfwww.kek.jp/stars/

