
Tip of the Month :

• How to use the Local and Central

Alarm Servers

revisit “Tip of the Week” from March 28, 2008

TINE Alarms
(a short review)

 An alarm belongs to a „device‟

 An alarm has a timestamp

 Last alarm signal

 An alarm has a start time

 First alarm signal

 An alarm has a code

 defines the alarm

 An alarm can have data

 Up to 64 total bytes (any format)

 Alarm identified by
 /context/server/device + code + starttime

TINE Alarms

 An alarm can be persistent
 Always there (until someone takes care of it)

 e.g. hardware readout error

 An alarm can be transient
 A change of state from okay to not okay

 e.g. beam dump, quench, RF trip

 An alarm can be oscillating
 There for a while then not there then back again.

 e.g. intermittent hardware error (a flickering
sedac error).

TINE Alarm Definition

 Alarm Code cross references static alarm
information
 Severity

 (Release 4.0: can override dynamically !)

 System ID
 Usually = 0 (=> let the CAS decide which system)

 Tag
 Short description of alarm

 Alarm Text, Device Text, Data Text, url

 Data Type and Size

TINE Alarm Severities

 Range of 0 to 15

 0 = test alarm

 15 = you can‟t possible have operations
unless you fix this

 Typically:
 0 => not really an alarm (not handled at CAS)

 1 – 6 => information (not archived)

 7 – 12 => warning

 > 12 => fatal

The New Alarm Viewer :

The New Alarm Viewer :

The New Alarm Viewer :

Alarm Configuration

 Static information from either

 „alarms.csv‟ (relative to the equipment

module)

 „fec.xml‟ (the <ALARM_DEFINITION>

tag)

 API Calls (java device server wizard)

Automatic Alarm Generation

 An Alarm Watch Table
 Threshold alarms

 readback is out of bounds !

 value_too_high, value_too_low, warn_too_high, warn_too_low

 Value Mask alarms
 masked readback does not match the ! „normal‟ value

 invalid_data

 Configure via either
 „almwatch.csv‟ (relative to the equipment module) or

 „fec.xml‟ (the <ALARM> tag) or

 API Calls

 You do NOT have to Set/Clear these alarms yourself!

Alarm Watch Table

almwatch.csv Instruct the Local Alarm Server which properties

should be monitored and where the thresholds

are :

Alarm Watch Table
fec.xml

Can also mask a readback

value and compare versus

a „normal‟ value

Alarm Watch Table

API :

Alarm API :

 Make sure your alarms are defined !

 alarms.csv (or fec.xml, or API)

 Make use of ClearAlarm()/SetAlarm()

inside your I/O loop.

 ClearAlarm() at the start of the loop

 Increments the „clear counter‟

 If the alarm is still active then SetAlarm()

 Resets the „clear counter‟

Alarm Definitions

alarms.csv :

#definition from errors.h

Alarm Definitions
fec.xml :

Alarm Definitions

API Call :

Java: from TEquipmentModule

Alarm API Example : C

Pass the hardware

address that caused

the problem

Pass the readback value that

crossed the threshold

Alarm API : java
Many convenient

constructors for setAlarm()

Alarm API : java

Some Notes

 ClearAlarm()
 does not remove the alarm

 Increments the clear counter

 SetAlarm() resets the clear counter

 If clear counter increase by more than 1 prior to the next SetAlarm() the alarm is
marked as „oscillating‟

 Clear counter > 8 => alarm has terminated !

 Transient Alarms need to call SetAlarmEx()
 Can pass the alarm flag „almINSTANT‟

 Immediately flagged as terminated

 Alarms stay in the local alarm table for the duration of the Alarm Termination
Window (default = 30 seconds)
 Longer if a configured CAS has not read the alarm

 CAS can react to (configured) alarm signals
 Trigger events

 Send email

 Send to central logger

Reading Alarms from a Server

 Best Practice:
 Monitor the Alarms „Snapshot‟

 Stock Property “NALARMS”
 5 long integer values

 Total number of alarms

 UTC Timestamp of the most recent

 Highest severity

 Number at the most recent timestamp

 Number at the highest severity

 Can incrementally update an alarm cache using this snapshot
(CAS)
 Use DATACHANGE mode

 If something‟s different : get the most recent alarm set.

 Alarm Viewer gets all alarm information from the CAS !

 Java : TAlarmSystem query class with lots of static methods to
get alarm information !

Reading Alarms in java

 TLink lnkNalms =

TAlarmSystem.monitorNumberOfAlarms(“PETRA”,null,”RF”,12,cbNalms)

 Monitors number of alarms from the PETRA CAS, alarm subsystem “RF” with

severity >= 12

 TLink lnkNalms =

TAlarmSystem.monitorNumberOfAlarms(“PETRA”,”ELWIS3”,null,12,cbNalms)

 Monitors number of alarms from server “ELWIS3” with severity >= 12 directly

 Inside cbNalms(lnk) :

 timeAlm = lnk.getLastTimeStamp();

 TAlarmMessage[] almsNew = getAlarms(“PETRA”,”RF”,timeAlm,timeNow,12);

 Join or filter the „almsNew‟ list to a cached alarm list.

 e.g. remove anything older than 1 hour

 e.g. don‟t include „terminated‟ alarms in the list

 etc.

You probably won‟t be doing this, but just for fun :

