Tip of the Week

sLocal Alarm and Archive Filtering

[Tip of the Week

Problem:
o Need a local history of property P

o But this takes up a lot of disk space
especially when there is no beam

o e.g. BPM positions

Solution:

o Trap ‘access & CA HIST’ in your equipment
module handler OR

still need to decide if there’s beam in the machine

o Apply a filter !

[Tip of the Week

Problem:

o Fatal alarm if property P exceeds some
value

o But only the machine state is ‘Running’
o e.g. Magnets, RF stations, etc.

Solution:

o Trap ‘access & CA_ALARM' in your
equipment module handler OR

still need to look at the machine state

o Apply a filter !

Local History Filters

Configuration : history.csv

« history.csv gives properties that are to be used for in the local archive server (see also commments in the TINE Archive System). e.qg.
Index, Export Name, Local Name, Property,Device,Data Length,Format,Heartbeat,Polling Rate,Archive Rate,Tolerance,Short Depth,Long Depth, Filter
1, BEM, BEMEQM, ORBIT.X,WL197, 200, float, 18000, 1000, 10,10%, 600, 1, /PETRA/GLOBALS [BeamCurrent] >0. 5
|-

2,EBPM, BFMEQM, OFBIT.Y,WL197, 300, float, 18000, 1000, 10, 10%, 600, 1, /PETRA/GLOBALS [BeamCurrent]>0. 3

C API : ApplyHistoryFilter()

int ApplyHistoryFilter (int idx,
char * parsableFilterString

)

Applies a history filter to an existing local history record.

A server can filter out long term storage by applying a filter condition which must be satisfied.

Parameters:

idx is the local history record index of the history element to which the filker should by applied. {Mote: this must already be allocated).
parsableFifterString is a parsable filter string defining the filter condition. This should be of the form /<context=/<server/<device=[<property>]<comparator:<valuex
where <comparatorz is one of '=", "I=", '=", or "<" and <valuez= is the filter's threshold value. The filter targer address should deliver (or be able to
deliver) a single numeric or string name value, If the filter string cannot be parsed of the target address does not exists, then no filter will be
established.
Returns:

0 upon success, otherwise a TINE error code.

References HstThlEntry::c, feclog(), and HstTbhIEntry::fltr.

java API : THistoryRecord class

public void setFilter(TFilterLink filter)

Local Alarm Server Filters

Configuration : almwatch.csv

« almwatch.csv gi(.res a list of broperties and value thresholds for setting value_too_high and value_too_low alarms. A 'warning’ threshold can also be supplied to set
warn_too_high and warn_too_low alarms.
LOCALNAME , DEVICENAME , PROPERTY, SIZE, FORMAT, SEVERITY , HIGH, LOW, HIGHWARN, LOWWARN, FILTER
SINECM, $#0, S5INE, 10, Fleat, 15,500, 0, 400, 10, /DESY2/GLOBALS [ParticleType] =1

C API : ApplyAlarmWatchFilter()

int ApplyAlarmWatchFilter (char * egm,
char * prp,
char * dev,
char * parsableFilterString
)

Applies a filter to an existing local alarm server's Watch Table.

A server can filter out automatic watch table alarms by applying a filter condition which must be satisfied.

Parameters:
egm is the 6-character local equipment identifier name, which is internal to server.
oo is the property which is to be called by the local alarm server
dev is the device name associated with the property to be called by the local alarm server
parsableFilterString is a parsable filter string defining the filter condition. This should be of the form /<context/<server/<device>[<property>]<comparator= <value>
where <comparators is one of '=", 'I=', '=', or =" and <value= is the filtar's threshold value. The filter targer address should deliver (or be able to
deliver) a single numeric or string name value. If the filter string cannot be parsed of the target address does not exists, then no filter will be
established.
Returns:

0 upon success, otherwise a TINE error code.

References fecloa().

java APl : TAlarmWatchEntry class

public woid setFilter(TFilterLink filter)

