
TINE Release 4.x.x News
(Feb. 8, 2017: That was the month that was !)

“What a long, strange trip it’s been ….”

Release Notes 4.6.0
- (RE)-CONNECTIVITY IMPROVEMENTS: Numerous improvements in handling TCP connections problems have

been introduced. In addition improvements to contract reconnection with transport modes such as CM_EVENT have

been introduced.

 Affects: client side links, mostly those using TCP mode and/or

 CM_DATACHANGE or CM_EVENT transport flags.

 Possible side effects: None expected.

 Attention level: GREEN

- CLEANUP IMPROVEMENTS: Overall resource and memory cleanup is now significantly improved when a dynamical

(shared) tine library is explicitly unloaded from memory.

In the past, various lists and resources where left resident when a client-side application exited, with the

expectations that all allocated resources are returned to the system. This is true if the application is the entity

unloading the library when it exits. However, an application such as matlab or python will load the tine shared

library when necessary and will unload the tine shared library if e.g. a 'clear mex' or 'del PyTine' is called. This

action does not exit the application but does unload the library and leaves memory and resources unaccounted for

(a memory leak) until e.g. matlab or python are themselves exited.

As of release 4.6.0 this is no longer the case: a 'clear mex' or 'clear tine' will unload the tine library and return all

memory an resources to the system.

 Note: There was no memory leak involving the tine library under normal operational conditions.

 Affects: MatLab, Python and other applications explicitly freeing the tine resources.

 Possible side effects: None expected.

 Attention level: GREEN

Release Notes 4.6.0

- New Feature: The API call SetConnectionTableCapacity() is now 'dynamic'. Meaning: it can be called at any time

(not just at initialization) and will accordingly re-allocate the connection table memory if the capacity is increased.

 Affects: The client-side connection table size.

 Possible side effects: None expected.

 Attention level: GREEN

- New Feature: The local history subsystem now supports 'annotations'. Local history annotations refer to the entire

device server and are not specific to any particular local history record. In conjunction with this new feature, the

stock properties HISTORY.CMT and HISTORY.CMTS are also available.

 Affects: Local history subsystem

 Possible side effects: None expected.

 Attention level: GREEN

Annotations
Now supported by

the local history

system as well …

Reconnection @ high rates

 Normally:
 1 Hz => Subscription package = 60 transfers

 Subscription counter decremented for each transfer

 Signal: counter = 10 -> signal for re-subscribing from
client

 @ higher rates => ‘renewal multiplier’ based on N Hz vs. 1
Hz.

 Client does not renew -> server stops sending to him!
 i.e. no ‘dangling clients’ allowed !

 What happens if the server schedules the delivery at some
external trigger rate which is systematically unknown?
 schedule @ 10 Hz (or higher) but the contract requested a 1 Hz

(or lower) polling interval ?

 Not a lot of time for the client to react to the signal …

Reconnection @ high rates
Server side: set the renewal

length for the scheduled

property per API.

Client side: set the renewal

threshold for the associated

data link (as a percent of

total delivery).

Release 4.6.0

 Normal
 e.g. server offers property “P” which is bound to a float

variable
 or some array of a normal data type.

 property is registered with all relevant information

 client attaches a link to property “P”
 asynchronous (or synchronous)

 specifies the preferred data type and size

 specifies a polling interval

 specifies a transfer mode (TIMER, DATACHANGE, etc.)

 or sets property “P”
 synchronous (or asynchronous)

 Specifies a timeout

 base transfer mode is SINGLE

Normal Client-Server Communication vs. Exotica …

Release 4.6.0

 The fun begins when …
 P uses a complex datatype

 e.g.
 CF_STRING, CF_KEYVALUE

 CF_SPECTRUM (CF_ASPECTRUM)

 CF_IMAGE (CF_AIMGAGE)

 CF_MDA

 CF_STRUCT

 CF_DBLTIME

 More difficult to archive, save-and-restore, etc.

 The caller uses CF_DEFAULT
 signal for the server to send the (last overloaded) data

type and size.

Normal Client-Server Communication vs. Exotica …

Release 4.6.0

 The fun begins when …

 The server schedules P at some external

(systematically unknown) rate.

 The server redirects P or the device

which supports P to some other server.

 P is a multi-channel array

 and some of the devices are redirected

Normal Client-Server Communication vs. Exotica …

Release 4.6.0

 The fun begins when …

 The server is a member of a server Group
 e.g. “/XFEL/LLRF.CONTROLLER”

 composed of

 “/XFEL/LLRF.CONTROLLER.1”

 “/XFEL/LLRF.CONTROLLER.2”

 “/XFEL/LLRF.CONTROLLER.3”

 …

 The client uses wild cards
 e.g. calls “/XFEL/VAC.ION_PUMP/*[P]”

 and the server is a ‘GROUP’ server.

Normal Client-Server Communication vs. Exotica …

Release 4.6.0

 The fun really begins when …

 Many exotica happen at the same time …

 The multi-channel property P is redirected for

many of its registered devices.

 The client makes a wildcard call and uses

data type CF_DEFAULT.

 (and imagine if some of the redirected-to

servers are scheduling the property and

others not! -> don’t try this)

Normal Client-Server Communication vs. Exotica …

Release 4.6.0

 Redirections and the XFEL MML

 The XFEL CMS and MML logic are on two separate
servers

 The CMS redirects almost all (all?) devices.
 And there are lots of them ! (>700 at the moment)

 700 x ~7 properties per device => 4900 redirection
entries

 MML needs to learn ALL of this.

 Initial problems:
 CMS uses ‘deep’ redirection

 The EQM handler knowns and provides the redirection
information and NOT the device registration itself.

 MML was issues set commands in a bundle.

 The C-Lib was using a simple linked list as the redirection
table
 Java uses a hash table.

Release 4.6.0

 Redirections and the XFEL MML

 C Lib now handle ‘deep’ redirections with

a bundled call

 C Lib now uses a hash table for

redirections

 But (best practice) …

 MML now acquires and makes use of the

redirection information at initialization

 After all: it should have a priori knowledge of this

anyway.

Release 4.6.0

 Python news:

 PyTine now accepts a tuple as input data

in a set or call !

 e.g. when the input is FLTINTINTINT object.

Release 4.6.0

 Acop.NET status

