TINE Release 4.x.x News
(Feb. 8, 2017: That was the month that was !)

“What a long, strange trip it's been"

[Release Notes 4.6.0

- (RE)-CONNECTIVITY IMPROVEMENTS: Numerous improvements in handling TCP connections problems have
been introduced. In addition improvements to contract reconnection with transport modes such as CM_EVENT have
been introduced.

Affects: client side links, mostly those using TCP mode and/or
CM_DATACHANGE or CM_EVENT transport flags.

Possible side effects: None expected.
Attention level: GREEN

- CLEANUP IMPROVEMENTS: Overall resource and memory cleanup is now significantly improved when a dynamical
(shared) tine library is explicitly unloaded from memory.

In the past, various lists and resources where left resident when a client-side application exited, with the
expectations that all allocated resources are returned to the system. This is true if the application is the entity
unloading the library when it exits. However, an application such as matlab or python will load the tine shared
library when necessary and will unload the tine shared library if e.g. a ‘clear mex' or 'del PyTine' is called. This
action does not exit the application but does unload the library and leaves memory and resources unaccounted for
(a memory leak) until e.g. matlab or python are themselves exited.

As of release 4.6.0 this is no longer the case: a 'clear mex' or ‘clear tine' will unload the tine library and return all
memory an resources to the system.

Note: There was no memory leak involving the tine library under normal operational conditions.
Affects: MatLab, Python and other applications explicitly freeing the tine resources.

Possible side effects: None expected.
Attention level: GREEN

Release Notes 4.6.0

- New Feature: The API call SetConnectionTableCapacity() is now ‘dynamic’. Meaning: it can be called at any time
(not just at initialization) and will accordingly re-allocate the connection table memory if the capacity is increased.

Affects: The client-side connection table size.

Possible side effects: None expected.

Attention level: GREEN
- New Feature: The local history subsystem now supports 'annotations’. Local history annotations refer to the entire
device server and are not specific to any particular local history record. In conjunction with this new feature, the
stock properties HISTORY.CMT and HISTORY.CMTS are also available.

Affects: Local history subsystem

Possible side effects: None expected.
Attention level: GREEN

Annotations

-@ Archive Viewer: TEST Motto: Hold the Pickles, Hold the Lettuce..,

File Mavigate Options Help

1000

ano
&0a

i Tpe groundhog did not see his shadow |

Now supported by
the local history
system as well ...

100
o
-1l00

-200
-300
=400
=500
:ggg SineServer,Sine [#0]: (02, Feb 2017 10:14:10,393, £5.00 ¥)
-800
-900
-1000
Feb 02Z/00h Feb 0Z2/05h Feb 0Z/10h Feb 0Z/15h Feb 0zZ/Z0h Feb 03/0lh
Thu Feb 0Z 00:00:00 CET 2017 Z5 Hours
Time: Thu 02, Feb 2017 10:14:10,393 CET UTEC: 1486026850 Time Span | Configurations | Selector | Chart & Trace | ¥Wiew & Movie
Live: System: Calendar | Interval
Stakus Property [Device] Value Description Log “ February 2017 > »
OK SineServer.Sine [#0] 65,00 Y Sine Curve O q
o Mon Tue Wed Thu Fri Sat Sun
1 2 3 4 5
6 7 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28
| Today |
Invert Selection Refresh all | | Remove Selected | | Remove Al Live Mode RL‘“JJ'

10:57:40: History data for selected channels loaded.

Reconnection @ high rates

Normally:

O
O
O

O

1 Hz => Subscription package = 60 transfers
Subscription counter decremented for each transfer

Signal: counter =10 -> signal for re-subscribing from
client

@ higher rates => ‘renewal multiplier’ based on N Hz vs. 1
Hz.
Client does not renew -> server stops sending to him!

i.e. no ‘dangling clients’ allowed !
What happens if the server schedules the delivery at some
external trigger rate which is systematically unknown?

schedule @ 10 Hz (or higher) but the contract requested a 1 Hz
(or lower) polling interval ?

Not a lot of time for the client to react to the signal ...

[Reconnection @ high rates

int SetPropertySubscriptionRenewallLength (char * egm, Serve r s i d e : set th e re newal

char * prpName,

S length for the scheduled
Sets the current subscription renewal length for the property specified. p ro pe rty pe r API .

Persistent contracts established by a client calling one of the AttachLmk() family "subscribe’ for the contract on the server
be renewed by the client. This of course happens automatically in the TINE kernel and is a guarantee that clients which 'disappear’ ungracefullyr do not persist |ncleﬁn|teh-r The ‘number of
responses’ is known as the subscription renewal length. This value is adjusted according to a client's desired polling interval (i.e. the default value at 1 Hz, 60, is augmented to higher
values when polling for instance at 10 Hz). The default value might under some circumstance be deemed to be too small. e.g. a server knows that properties are being "scheduled’ (see
_SystemScheduleProperty()) at many Hz, which would cause the subscription counter to descrease more rapidly than the client’s polling interval would otherwise dictate. In such cases
the subscription "renewals’ would be far more frequently than an efficient data transmission would warrant.

Parameters:
eqm (input) is the local equipment module name (maximum 6 characters in length) For example: "BPMEQM".
prpName is the registered property for the buffer is to be assigned.
value is the desired setting

Returns:

0 upon success of a TINE error code

See also:
SetSystemSubscriptionRenewalLength()

References feclog(), and GetPropertyListStruct().

int SetSubscriptionRenewalThreshold (int linkId,

it thresholdinpercent Client side: set the renewal
Gets the current client-side subscription threshold for the link in question. th res h o I d fo r the aSSOCiated

Persistent contracts established by a Client API Callsalling one of the AttachLink() family 'subscribe’ for the contract on th|

and must be renewed by the client. This of course happens automatically in the TINE kernel and is a guarantee that clients| data Ii n k (as a pe rcent Of

‘number of responses’ is known as the subscription renewal length. This value is adjusted according to a client's desired po|
higher values when polling for instance at 10 Hz). The default value might under some circumstance be deemed to be too g

'scheduled’ (see _SystemScheduleProperty()) at many Hz, which would cause the subscription counter to descrease mo total de I Ive ry) .

dictate. In such cases the subscription ‘'renewals’ would be far more frequently than an efficient data transmission would w.

threshold value by making use of this call.

Parameters:
linkId is the link id for the link in question (returned from the original call to AttachLink().
thresholdInPercent is the desired threshold given as a percent of the total number of subscription transfers. This should be positive integer. Accepted values range between 10
and 20 (percent).

Returns:
0 upon success of a TINE error code

See also:
GetSubscriptionRenewalThreshold()

References feclog().

Release 4.6.0

Normal Client-Server Communication vs. Exotica ...

Normal

O

e.g. server offers property “P” which is bound to a float
variable

= or some array of a normal data type.

m property is registered with all relevant information
client attaches a link to property “P”

m asynchronous (or synchronous)

m specifies the preferred data type and size

m specifies a polling interval

m specifies a transfer mode (TIMER, DATACHANGE, etc.)
or sets property “P”

m Synchronous (or asynchronous)

= Specifies a timeout

= base transfer mode is SINGLE

Release 4.6.0

Normal Client-Server Communication vs. Exotica ...

The fun begins when ...
o P uses a complex datatype

e.g.

o CF_STRING, CF_KEYVALUE
CF_SPECTRUM (CF_ASPECTRUM)
CF_IMAGE (CF_AIMGAGE)
CF_MDA

CF_STRUCT
o CF_DBLTIME

More difficult to archive, save-and-restore, etc.

o The calleruses CF DEFAULT

signal for the server to send the (last overloaded) data
type and size.

O O O O

Release 4.6.0

Normal Client-Server Communication vs. Exotica ...

The fun begins when ...

o The server schedules P at some external
(systematically unknown) rate.

o The server redirects P or the device
which supports P to some other server.

o P Is a multi-channel array
and some of the devices are redirected

Release 4.6.0

Normal Client-Server Communication vs. Exotica ...

The fun begins when ...

o The server is a member of a server Group

e.g. "/ XFEL/LLRF.CONTROLLER”

O composed of
“’XFEL/LLRF.CONTROLLER.1”
“/’XFEL/LLRF.CONTROLLER.2”
“’XFEL/LLRF.CONTROLLER.3”

o The client uses wild cards
e.g. calls “/XFEL/VAC.ION_PUMP/*[P]”
and the server is a ‘GROUP’ server.

Release 4.6.0

Normal Client-Server Communication vs. Exotica ...

The fun really begins when ...

o Many exotica happen at the same time ...

The multi-channel property P is redirected for
many of its registered devices.

The client makes a wildcard call and uses
data type CF_DEFAULT.

(and imagine if some of the redirected-to
servers are scheduling the property and
others not! -> don't try this)

Release 4.6.0

Redirections and the XFEL MML

o The XFEL CMS and MML logic are on two separate
servers

o The CMS redirects almost all (all?) devices.
And there are lots of them ! (>700 at the moment)

700 x ~7 properties per device => 4900 redirection
entries

o MML needs to learn ALL of this.

o Initial problems:

CMS uses ‘deep’ redirection

o The EQM handler knowns and provides the redirection
information and NOT the device registration itself.

o MML was issues set commands in a bundle.
The C-Lib was using a simple linked list as the redirection

table
O Java uses a hash table.

Release 4.6.0

Redirections and the XFEL MML

o C Lib now handle ‘deep’ redirections with
a bundled call

o C Lib now uses a hash table for
redirections

o But (best practice) ...

MML now acquires and makes use of the
redirection information at initialization

O After all: it should have a priori knowledge of this
anyway.

[Release 4.6.0

Python news:

o PyTine now accepts a fuple as input data
In a set or call !

e.g. when the input is FLTINTINTINT object.

[Release 4.6.0

Acop.NET status

